Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1семестр_2012_РТФ_посл.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
364.03 Кб
Скачать

Затухающие колебания. Резонанс.

  1. Определить коэффициент затухания и время релаксации математического маятника, если за промежуток времени t=480 с маятник теряет 99 % своей полной механической энергии.

  2. Логарифмический декремент затухания математического маятника равен 0,2. Найти, во сколько раз уменьшиться амплитуда колебаний за одно полное колебания маятника.

  3. Тело массой m=12 г совершает затухающие колебания с частотой w=p рад/с. При этом за время t=60 с тело теряет 0,9 своей полной механической энергии. Найти: a) коэффициент затухания; б) коэффициент сопротивления среды; в) добротность колебательной системы.

  4. Логарифмический декремент затухания математического маятника равен 0,4. Найти, во сколько раз уменьшиться амплитуда колебаний за два полных колебания маятника.

  5. Тело массой m=360 г подвешено к пружине с коэффициентом жесткости k=16 Н/м и совершает вертикальные колебания в некоторой среде. Логарифмический декремент затухания . Сколько колебаний N должно совершить тело, чтобы амплитуда смещения уменьшилась в е раз? За какой промежуток времени произойдет это уменьшение амплитуды?

  6. Затухающее колебание описывается уравнением . Определите время релаксации, период колебаний, коэффициент затухания, добротность.

  7. Затухающее колебание описывается уравнением . Определите время релаксации, период колебаний, коэффициент затухания, добротность.

  8. Частица совершает прямолинейные затухающие колебания с периодом Т=4,5 с. Начальная амплитуда колебаний А0=0,16 м, а амплитуда после 20 полных колебаний А=0,01 м. Определить коэффициент затухания и логарифмический декремент затухания. Написать уравнение колебаний частицы, приняв начальную фазу колебаний j=0.

  9. Логарифмический декремент затухания математического маятника равен 0,05. Найти, во сколько раз уменьшиться полная энергия колебаний за время t=10T.

  10. Математический маятник совершает затухающие колебания в среде, логарифмический декремент затухания которой l=1,26. Определить логарифмический декремент затухания маятника, если сопротивление среды возрастает в 2 раза.

  11. Определить амплитуду А вынужденных колебаний груза массы m=0,1 кг на пружине с коэффициентом жесткости k=10 Н/м, если на груз действует вертикальная вынуждающая гармоническая сила с амплитудой F0=1,5 Н и частотой, в два раза большими собственной частоты груза на пружине. Коэффициент затухания b=0,4с-1.

  12. Найти коэффициент затухания и логарифмический декремент затухания математического маятника, если известно, что за t=100 с колебаний полная механическая энергия маятника уменьшилась в десять раз. Длина маятника L=0,98 м.

  13. Амплитуда затухающих колебаний математического маятника за 1 минуту уменьшилась вдвое. Во сколько раз она уменьшится за 3 минуты?

  14. Доказать, что резонансная частота колебаний для амплитуды смещения определяется по формуле .

  15. Доказать, что резонансная частота колебаний для амплитуды скорости определяется по формуле .

  16. Доказать, что резонансная частота колебаний для смещения определяется по формуле .

  17. Амплитуды смещений вынужденных колебаний при частотах вынуждающей силы 100 и 150 Гц равны между собой. Найти частоту, соответствующую резонансу смещений. Вынуждающая сила изменяется по гармоническому закону.

  18. Амплитуды ускорения вынужденных колебаний при частотах вынуждающей силы n1 и n2 равны между собой. Найти частоту, соответствующую резонансу ускорения. Вынуждающая сила изменяется по гармоническому закону.

  19. Амплитуды скорости вынужденных колебаний при частотах вынуждающей силы n1 и n2 равны между собой. Найти частоту, соответствующую резонансу скорости. Вынуждающая сила изменяется по гармоническому закону.

  20. Частица совершает прямолинейные затухающие колебания с периодом Т=4,5 с. Начальная амплитуда колебаний А0=0,16 м, а амплитуда после 20 полных колебаний А=0,01 м. Определить коэффициент затухания и логарифмический декремент затухания. Написать уравнение колебаний частицы, приняв начальную фазу колебаний j=0.

  21. Уравнение затухающих колебаний дано в виде м. Найти скорость колеблющейся точки в моменты времени: 0, Т, 2Т, 3Т и 4Т.

  22. Амплитуда затухающих колебаний математического маятника за 1 минуту уменьшилась втрое. Во сколько раз она уменьшится за 4 минуты?

  23. Тело массой m=360 г подвешено к пружине с коэффициентом жесткости k=16 Н/м и совершает вертикальные колебания в некоторой среде. Логарифмический декремент затухания l=0,01. Сколько колебаний N должно совершить тело, чтобы амплитуда смещения уменьшилась в е раз? За какой промежуток времени произойдет это уменьшение амплитуды?

  24. Полная энергия затухающих колебаний математического маятника за 1 минуту уменьшилась вдвое. Во сколько раз она уменьшится за 4 минуты?

  25. Логарифмический декремент затухания математического маятника равен 0,1. Найти, во сколько раз уменьшиться полная энергия колебаний за время t=4T.

  26. Найти коэффициент затухания и логарифмический декремент затухания математического маятника, если известно, что за t=50 с колебаний полная механическая энергия маятника уменьшилась в десять раз. Длина маятника L=0,98 м.