Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Книга учебник по СВМ..doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
11.35 Mб
Скачать

Регулирование режима работы воу

Поддержание температурного режима и в частности разности to греющей среды и вторичного пара t одно из важнейших условий нормальной работы ВОУ.

Эта величина tа также производительность ВОУ возрастают с увеличением средней to греющей воды или пара и с понижением Р в конденсаторе, когда соответственно снижается to вторичного пара. Возрастание t вызывает повышение влажности вторичного пара и увеличение солености дистиллята.

К важнейшим показателям режима ВОУ относятся её производительность, солёность приготовляемого дистиллята, а также показатели, характеризующие режим питания и продувания.

1) В установках с испарителями поверхностного типа на солёность дистиллята оказывает влияние средняя разность to греющей воды и кипящего рассола. Чем больше эта разность, тем более бурное кипение, больше влажность получаемого пара, т.е. унос рассола паром и следовательно выше солёность приготовляемого дистиллята.

2) В установках с камерами испарения бесповерхностного типа на солёность дистиллята влияет разность to рассола, поступающего в камеру и to насыщения пара. Чем больше эта разность, тем выше солёность приготовляемого дистиллята.

Следовательно, с увеличением разности to греющей среды и кипящего рассола в ВОУ поверхностного типа, так же как с повышением разности to рассола поступающего в камеру и to насыщения пара в ВОУ с камерами бесповерхностного типа, производительность возрастает.

Таким образом, чем с большей производительностью эксплуатируется ВОУ, тем выше солёность приготовляемого в ней дистиллята и наоборот.

Производительность ВОУ определяется по показанию расходомера, установленного на напорной магистрали дистилляционного насоса.

Солёность приготовляемого дистиллята контролируется по показаниям автоматически действующих соленомеров, систем защиты и сигнализации.

Солёность дистиллята периодически контролируется в судовой лаборатории путем анализа проб на содержание хлоридов, отбираемых из напорной магистрали дистилляционного насоса.

Основным методом регулирования Р в конденсаторе, а следовательно и to при которой происходит испарение морской воды в ВОУ, является изменение количества охлаждающей воды, протекающей через конденсатор.

Однако следует учитывать, что при чрезмерно большом количестве воды и высокой скорости её в трубках, возможны эрозия и преждевременный выход трубок из строя.

Глава 5 гидроприводы. Пневмоприводы. Правила технической эксплуатации.

В состав гидропривода входят следующие элементы:

  • Гидропередача - состоит из насоса, гидродвигателя и соединяющих их трубопроводов (гидролиний). Насос преобразует энергию приводного двигателя в гидравлическую энергию потока жидкости, передаваемую по тубопроводам к гидродвигателю, а последний преобразует её в механическую энергию, которая обеспечивает работу судового устройства;

  • Гидроаппаратура - служит для управления гидроприводом и состоит из распределителей (манипуляторов), позволяющих изменять направление потока рабочей жидкости; клапанов, предназначенных для регулирования давления, скорости и объёма потока жидкости;

  • Гидробаки, фильтры, теплообменники, гидроаккумуляторы - служат вспомогательными устройствами.

В зависимости от вида приводного двигателя насоса гидроприводы подразделяются на:

  • турбогидроприводы,

  • дизель - гидроприводы и

  • электроприводы - последние нашли наибольшее распространение.

В гидроприводе используются объёмные роторные насосы и следующие разновидности гидродвигателей:

  • гидроцилиндры одностороннего и двустороннего действия, сообщающие выходному звену (поршню) поступательное движение;

  • поворотные гидродвигатели пластинчатого или винтового типа, сообщающие выходному звену (валу) вращательное движение с углом поворота менее 360°;

  • гидромоторы, сообщающие выходному звену (валу) вращательное движение.

Все роторные насосы могут быть использованы в качестве гидромоторов благодаря свойству обратимости, заключающейся в том, что жидкость, подводимая к насосу под давлением, приводит во вращение его ротор и вал.

Однако наибольшее распространение в гидроприводах получили аксиально-поршневые, радиально-поршневые и пластинчатые гидромоторы.

По характеру движения рабочих органов пластинчатые (шиберные) насосы относятся к роторно-поступательным.

Пневмопривод.

Пневматический привод (пневмопривод) — совокупность устройств, предназначенных для приведения в движение машин и механизмов посредством энергии сжатого воздуха. Обязательными элементами пневмопривода являются компрессор (генератор пневматической энергии) и пневмодвигатель.

Пневмопривод, подобно гидроприводу, представляет собой своего рода «пневматическую вставку» между приводным двигателем и нагрузкой (машиной или механизмом) и выполняет те же функции, что и механическая передача (редуктор, ремённая передача, кривошипно-шатунный механизм и т. д.).

Рис.53. Пневмодвигатель.

Основное назначение пневмопривода, как и механической передачи, — преобразование механической характеристики приводного двигателя в соответствии с требованиями нагрузки (преобразование вида движения выходного звена двигателя, его параметров, а также регулирование, защита от перегрузок и др.).

В общих чертах, передача энергии в пневмоприводе происходит следующим образом:

  • Приводной двигатель передаёт вращающий момент на вал компрессора, который сообщает энергию рабочему газу.

  • Рабочий газ после специальной подготовки по пневмолиниям через регулирующую аппаратуру поступает в пневмодвигатель, где пневматическая энергия преобразуется в механическую.

  • После этого рабочий газ выбрасывается в окружающую среду, в отличие от гидропривода, в котором рабочая жидкость по гидролиниям возвращается либо в гидробак, либо непосредственно к насосу.

  • В зависимости от характера движения выходного звена пневмодвигателя (вала пневмомотора или штока пневмоцилиндра), и соответственно, характера движения рабочего органа пневмопривод может быть вращательным или поступательным. Пневмоприводы с поступательным движением получили наибольшее распространение в технике.

Регулирование объемного гидропривода. Правила технической эксплуатации.

Гидроприводом называется совокупность источника энергии и устройства для ее преобразования и транспортирования посредством рабочей жидкости к приводимой машине. Гидропривод, в котором скорость его выходного звена регулируется изменением подачи насоса, либо изменением расхода через гидродвигатель, называется гидроприводом с объемным регулированием. Схема, составленная из электроприводного насоса 1 переменной подачи с ручным управлением, нерегулируемого реверсируемого гидродвигателя 2 и трубопроводов, обеспечивающих соединение их выходов и входов. Реверс вала гидродвигателя осуществляется реверсированием потока рабочей жидкости в насосе.

Рис. 54. Элементарная схема гидропривода

Насос осуществляет преобразование механической энергии электродвигателя в гидравлическую энергию потока перекачиваемой им жидкость. Гидравлическая энергия преобразуется в механическую, отдаваемую с вала гидродвигателя приводимому им в действие механизму. В рассматриваемом гидроприводе регулирование скорости на выходе осуществляется изменением подачи насоса. Регулирование скорости выходного звена возможно и путем изменения расхода через гидродвигатель. В этой схеме для реверсирования гидродвигателя используется четырехходовой трехпозиционный распределитель 3 с ручным управлением. Гидросхема такого привода открытая, поскольку необходимо обеспечить непрерывность действия насоса постоянной подачи. Для этого в схему включен бак, открытый на атмосферу.

Различия рассматриваемых гидроприводов проявляются при анализе их характеристик, графиков изменения общего кпд гп, момента на валу гидродвигателя Мгм и мощности привода Nпдв в зависимости от частоты вращения вала гидродвигателя.

  • Первый гидропривод характеризуется постоянством момента на валу гидродвигателя, что при увеличении частоты вращения вала приводит к увеличению мощности, и поэтому гидропривод должен иметь мощность, необходимую для создания на валу гидродвигателя наибольшего момента при наибольшей частоте его вращения.

  • Второй гидропривод в отличие от первого характеризуется постоянством мощности, что при изменении частоты вращения вала гидродвигателя приводит к изменению момента по гиперболической кривой. Гидропривод, выполненный по второй схеме, можно применять в грузоподъемных механизмах, он позволяет обеспечивать необходимую грузоподъемность при соответствующей скорости подъема и наименьшей мощности привода. У таких гидроприводов примерно одинаковая сложность гидрооборудования у одного вследствие конструкции насоса и его регулирующих устройств, у другого - из-за аналогичной конструкции гидромотора, но второй гидропривод имеет большую массу из-за наличия в схеме бака.

  • Оба гидропривода имеют примерно одинаковую экономичность и характеризуются большим диапазоном изменения частоты вращения вала гидродвигателя, поскольку у гидропривода, осуществленного по первой гидросхеме, мощность достаточна для работы на любом скоростном режиме, он имеет универсальное назначение.

  • В объемном гидроприводе возможно и смешанное регулирование скорости выходного звена, применением регулируемого насоса и гидродвигателя. На малой частоте вращения вала гидродвигателя регулирование осуществляется путем увеличения подачи насоса.

При сохранении момента на валу гидродвигателя неизменным, этот вид регулирования связан с увеличением мощности, снимаемой с вала приводного двигателя. На большой частоте вращения путем регулирования расхода через гидродвигатель достигается постоянство мощности и уменьшение момента на валу гидродвигателя по гиперболической кривой.

К преимуществу гидроприводов относятся:

  • плавное (бесступенчатое) регулирование скорости в широком диапазоне;

  • большое переменное усилие и моменты;

  • хорошая приемистость при пуске, разгоне, реверсе и остановке, способность - иметь надёжную защиту от перегрузок;

  • возможность применения дистанционного управления и автоматизации;

  • малая удельная масса (0,2-0,3 кг на 1 кВт передаваемой мощности).

Недостатком гидропривода:

  • Является несколько меньший (чем электропривода) КПД, ещё более снижающийся в процессе регулирования при износе узлов и деталей из-за возрастания утечек жидкости.

  • По числу циклов работы за один оборот различают насосы однократного и многократного действия.

  • Насосы однократного действия выполняют регулируемыми и нерегулируемыми, а насосы многократного действия только нерегулируемыми.

  • Объемный к. п. д. зависит от размеров насоса и составляет при расчетном давлении 0,7--0,9. Пластинчатые насосы однократного действия применяют в гидросистемах с небольшим давлением (до 4--5 МПа).

  • Их недостаток заключается в большой радиальной нагрузке на вал ротора.

  • Для высоких давлений применяют нерегулируемые пластинчатые насосы двукратного действия.

  • Применяют на судах в гидравлических рулевых машинах и гидравлических приводах палубных механизмов.

В гидравлических передачах мощности механизмам судна наиболее широкое применение получили роторно-поршневые насосы.

Роторно-поршневым насосом называют роторно-поступательный насос с рабочими органами в виде поршней или плунжеров. Различают насосы радиально-поршневые, у которых ось вращения перпендикулярна осям поршней, и аксиально-поршневые, у которых ось ротора параллельна осям поршней.

Радиально - поршневые насосы имеют высокий к.п.д. (объемный 0.96-0,98 и механический 0,80--0,95) и ресурс работы до 40 000 ч, в связи с чем их широко применяют в различных отраслях промышленности, а также на судах. Мощность отдельных радиально-поршневых насосов достигает 3000 кВт, а подача -- 500 м3ч. Они рассчитываются на номинальное давление 10--20 МПа.

Аксиально-поршневые нерегулируемые насосы с постоянным направлением потока, наклонным блоком и двойным карданом выпускаются отечественной промышленностью трех типоразмеров: Н71Н, Н140Н и Н250Н (Н -- насос, цифра -- рабочий объем, см3, Н -- нерегулируемый).

При работе на номинальном режиме они имеют до первого капитального ремонта ресурс более 5000 ч. Причем через каждые 2000 ч работы необходимо заменять уплотнительные манжеты, утечка жидкости через которые не должна превышать 0,5 см3/ч. В конце ресурса объемный к.п.д. не должен снижаться более чем на 10%. Привод насоса предусмотрен через упругую муфту. Корпус должен быть ниже уровня рабочей жидкости в системе.

Роторно-поршневые гидравлические машины широко используют в качестве гидродвигателей. Гидродвигатели используются в гидроприводах палубных механизмов.

Элементы объёмного гидропривода, рабочие жидкости, гидроаппаратура, гидролинии и гидроёмкости. Правила технической эксплуатации.

Объемным гидроприводом называется совокупность объем гидромашин, гидроаппаратуры и вспомогательных устройств, соединённых с помощью гидролиний. Предназначен для передачи энергии и преобразования движения с помощью жидкости и состоят из:

  • Гидромашин - гидронасосы, гидродвигатели.

  • Гидроаппаратуры - клапаны, дроссели, гидрораспределители.

По виду источника энергии:

  • насосный, т.е., рабочая жидкость подается в гидродвигатель насосом - эта система наиболее распространена,

  • аккумуляторный.

  • магистральный.

Требования к рабочим жидкостям:

  • малоизменяемая вязкость в диапазоне рабочих температур,

  • пожаро - и взрыво безопасность,

  • нетоксичность,

  • рабочие жидкости не должны разрушать резину, и иметь диэлектрические свойства,

  • не должны смешиваться с водой,

  • не должны быть сжимаемы.

(Индустриальное 20, 30-вязкость, Турбинное 22, трансформаторное, веретенное АУ, силиконовая жидкость ВТУ).

Гидропривод на судне может работать в условиях с интервалом температур от -45оС до + 45оС, а в машинных отделениях при температуре от –70оС до +80о С.

Элементы гидросистем:

  • Объёмный гидродвигатель - гидромашина для преобразования энергии потока рабочей жидкости, в энергию движения выходного звена. В зависимости от характера выходного звена делятся на 3 группы: гидромоторы - сообщают выходному звену неограниченное вращательное движение.

  • Гидроцилиндры - сообщают выходному звену неограниченное поступательное движение.

  • Поворотные гидродвигатели - сообщают выходному звену ограниченное вращательное движение.(<360 о) поворотный.

  • Гидромоторы - это роторные гидронасосы, обращенные в гидродвигатели:

аксиально - поршневые, радиально - поршневые, пластинчатые, шестеренные.

  • Гидродвигатели одностороннего действия, в которых поршень перемещается силой давления жидкости в одну сторону, а в другую - под действием внешних сил.;

  • 2-х стороннего действия – телескопический - когда желаемый ход превышает установочную допустимую длину.

К объёмному гидроприводу Классификационными обществами предъявляются следующие основные требования:

  • гидравлические механизмы должны быть рассчитаны на прочность исходя из условий их эксплуатации;

  • трубопроводы гидравлических приводов должны изготовляться из стальных бесшовных труб;

  • гидроприводы должны иметь предохранительные клапаны;

  • гидропривод должен иметь клапана для выпуска воздуха.

  • в системе трубопроводов гидропривода необходимы фильтры;

  • гидропривод должен иметь штатные контрольно-измерительные приборы, контролирующие его работу.

Гидрожидкости:

  • В качестве рабочей жидкости в гидроприводе используется минеральное масло, обеспечивающее смазку и охлаждение узлов трения насоса и гидродвигателя. Рекомендуется наибольшее значение температуры масла при работе гидродвигателя не более 80°С.

  • Замена масла должна производиться после возрастания кислотного числа вдвое по сравнению с первоначальным.

  • В начале эксплуатационного периода гидропривода первую смену масла рекомендуется производить после 50-100 часов работы для удаления с ним продуктов интенсивного износа.

  • Масло с антиокислительными и антикоррозионными присадками служит около трёх лет.

  • Масла без присадок заменяются ежегодно.

  • Опыт эксплуатации гидропривода показывает, что его надёжность зависит от чистоты внутренних полостей гидрооборудования, трубопроводов и рабочей жидкости, что обеспечивается промывкой гидропривода от технологических загрязнений при его сборке и заполнении чистой рабочей жидкостью.

  • Анализ масла сдается каждые 3 месяца в независимую лабораторию на берегу, методом отбора из системы примерно = 100 – 150 мл/л в пластиковую бутылку со спец. этикеткой и передается через агента в порту для отсылки в лабораторию. Данное действие обязательно согласно требованию Кодексу МКУБ.

Анализ причин отказов и нарушений в работе гидропривода показывает:

  • Что это происходит из-за насыщения рабочей жидкости воздухом.

  • Наличие воздуха в гидроприводе приводит к усилению ценообразования, к развитию кавитации, к коррозии деталей, снижению быстродействия и нарушению точности его работы.

  • Пена в гидроприводе при резком изменении нагрузки приводит к возникновению скачкообразного перемещения исполнительного механизма.

  • Для устранения вредного влияния воздуха необходимо строгое выполнение условий снижения его количества в гидросистеме.