
1.Теплопередача
Это учение о процессах распространения теплоты. Теплота распространяется тремя принципиально различными способами: теплопроводностью, конвекцией и тепловым излучением.
Теплопроводность представляет собой процесс распространения тепловой энергии при непосредственном соприкосновении отдельных тел или частиц одного тела, имеющих различные температуры и обусловлена движением микрочастиц тела
Конвекция возможна только в текучей среде–жидкой или газообразной. Под конвекцией теплоты понимают процесс переноса тепловой энергии при перемещении объемов жидкости или газа в пространстве из области с более высокой температурой в область с пониженным ее значением. Перенос теплоты неразрывно связан с переносом самой среды.
Тепловое излучение – это процесс распространения тепловой энергии с помощью электромагнитных волн. Сопровождается двойным превращением энергии: тепловая энергия излучающего тела переходит в лучистую и обратно – лучистая энергия, поглощаясь телом, переходит в тепловую.
Условия и закономерности протекания элементарных явлений различны. В большинстве случаев один вид теплообмена сопровождается другим. Теплопроводность в чистом виде большей частью имеет место лишь в твердых однородных телах. Конвекция теплоты всегда сопровождается теплопроводностью, так как при движении жидкости или газа неизбежно соприкосновение отдельных частиц, имеющих различную температуру. Совместный процесс конвекции и теплопроводности называют конвективным теплообменом.
При инженерных расчетах определяют конвективный теплообмен между потоком жидкости или газа и поверхностью твердого тела. Этот процесс конвективного теплообмена называют конвективной теплоотдачей. Конвективная теплоотдача часто сопровождается теплоотдачей излучением.
В целом перенос теплоты от горячих газов к холодному воздуху через разделяющую их стенку представляет собой сложный процесс, который называют теплообменом или теплопередачей. В рабочем пространстве нагревательного устройства передача теплоты от нагретых газов к внутренней поверхности стенки будет происходить в основном путем излучения и конвекции, через саму стенку – путем теплопроводности и от наружной поверхности стенки в окружающее пространство – путем конвекции и излучения.
Следовательно, на отдельных этапах прохождения теплоты элементарные виды теплообмена могут находиться в самом различном сочетании.
Процессы теплообмена могут происходить в различных средах: в чистых веществах и разных смесях, при изменении и без изменения фазового состава. Часто процессы переноса тепловой энергии сопровождаются переносом вещества (процессы окисления, восстановления, разложения). При наличии массообмена процессы теплообмена значительно усложняются и будут описываться более сложными дифференциальными уравнениями.
1.1.Теплопроводность
Механизм теплообмена теплопроводностью обусловлен движением микрочастиц вещества. В газах перенос энергии осуществляется путем диффузии молекул и атомов, в жидкостях и твердых телах (диалектриках) – за счет упругих волн, в металлах – путем диффузии свободных электронов и упругих колебаний кристаллической решетки.
Процесс теплопроводности неразрывно связан с распределением температуры внутри тела. Поэтому при изучении процесса прежде всего необходимо установить понятия температурного поля и градиента температуры.
1.1.1.Температурное поле
Температура характеризует тепловое состояние тела и определяет степень его нагретости. Теплопроводность может иметь место только при условии, что в различных точках тела (или системы тел) температура неодинакова. В общем случае процесс передачи теплоты теплопроводностью в твердом теле сопровождается изменением температуры как в пространстве, так и во времени. Основной задачей теории теплопроводности и является изучение пространственно – временного изменения температуры, т.е. нахождение зависимости
,
(1.1)
где
–координаты точек тела;
–
временная координата.
Уравнение (1.1) представляет собой математическое выражение температурного поля. Таким образом, температурным полем называется совокупность значений температуры во всех точках изучаемого пространства и для каждого момента времени.
Различают стационарное и нестационарное температурное поле. Уравнение (1.1) является записью наиболее общего вида температурного поля, когда температура изменяется с течением времени и от одной точки к другой. Такое поле отвечает неустановившемуся тепловому режиму теплопроводности и носит название нестационарного температурного поля.
Если тепловой режим является установившимся, то температура в каждой точке тела с течением времени остается неизменной, и такое температурное поле называют стационарным. В этом случае температура является функцией только координат
;
.
(1.2)
Температурное поле, соответствующее уравнениям (1.1) и (1.2) является пространственным, так как температура – это функция трех координат. Если температура есть функция двух координат, то поле называют двухмерным:
;
.
(1.3)
Если температура является функцией одной координаты, то поле называют однородным:
.
(1.4)
Наиболее простой вид имеет уравнение одномерного стационарного температурного поля:
и
.
(1.5)
Одномерной, например, является задача о переносе теплоты в стенке, у которой длину и ширину можно считать бесконечно большими по сравнению с толщиной.