Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Капиллярный электрофорез лабораторная.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
187.39 Кб
Скачать

Обработка результатов в капиллярном электрофорезе. Качественный и количественный анализ

Целью любого анализа является получение ответов на вопросы: какие компоненты присутствуют в анализируемом образце и какова величина их концентраций? Первый из вопросов есть задача качественного анализа, второй — количественного. Для решения обеих задач в КЭ перед анализом пробы обязательно проводят процедуру градуировки системы путем измерения одной или нескольких смесей с известным качественным и количественным составом. Результатом градуировки являются формирование таблицы компонентов (содержит времена миграции и имена определяемых компонентов) и построение градуировочной зависимости (показывает зависимость сигнала детектора от концентрации/содержания вещества).

В капиллярном электрофорезе используют те же принципы интегрирования пиков, методы градуировки, способы формирования отчетов, как в газовой хроматографии и ВЭЖХ. По аналогии с ВЭЖХ большинство детекторов в капиллярном электрофорезе являются концентрационными, для которых высота или площадь пика прямо пропорциональны концентрации вещества, образующего пик.

Качественный анализ. Характеристики миграции/удерживания

Качественный анализ обычно состоит в сравнении времен миграции (в случае капиллярного зонного электрофореза) или времен удерживания (в случае мицеллярной электрокинетической хроматографии), полученных для стандарта и пробы, измеренных в одинаковых условиях. Если эти времена совпадают с заданной точностью (обычно окно идентификации не превышает 5 %), то считают, что искомое вещество в пробе найдено и переходят к количественному анализу. Тем не менее, такой способ идентификации вещества не всегда надежен, особенно в случае анализа проб со сложной матрицей.

Несмотря на высокую разделительную способность капиллярного электрофореза, качественный анализ близкорасположенных пиков может вызывать некоторые трудности. В этом случае можно рекомендовать использование метода добавок. В пробу, для которой затруднена идентификация анализируемого вещества, вносят это вещество и проводят повторный анализ. Если на электрофореграмме появляется новый пик, это означает, что анализируемый компонент ранее в пробе отсутствовал. Если же один из бывших пиков увеличился по высоте (площади), то можно утверждать, что это и есть анализируемый компонент. Величину добавки обычно выбирают так, чтобы высота (площадь) интересующего нас пика увеличилась не более чем в 2—3 раза.

Зачастую приходится сталкиваться с ситуацией, когда время миграции компонента не стабильно от анализа к анализу, что связано, в том числе, с нестабильностью электроосмотического потока. Причин этому несколько, от недостаточно кондиционного состояния капилляра, использования модификации внутренней поверхности капилляра или введения добавок в состав буферного электролита до температурных эффектов и влияния матричных и сопутствующих компонентов. Использование в таких ситуациях маркера ЭОП (например, ацетона) как в растворе стандарта, так и в пробе, позволит вычислить исправленные времена миграции, представляющие собой разность времен миграции анализируемого вещества и метки ЭОП.

Еще одним из вариантов повышения достоверности идентификации анализируемого компонента является введение в стандартный раствор и раствор пробы маркера — внутреннего стандарта. Это должно быть вещество, заведомо отсутствующее в анализируемых пробах, но имеющее схожие с определяемым веществом физико-химические свойства. Для стандарта и пробы вычисляют относительные времена миграции (можно арифметически поделить время миграции компонента на время миграции ЭОП и, наоборот, но для пробы и для стандарта это должно быть сделано одинаково) и находят в пробе близкие по численному значению результаты.

Наиболее полную и достоверную идентификацию вещества на сегодняшний день можно получить при использовании диодно-матричного детектора, который по результату одного анализа может предоставить информацию:

по сопоставлению времени миграции вещества и его спектра в пробе и стандартном растворе (при этом дополнительно будет дана оценка чистоты пика пробы, например, по наложению спектров, снятых в трех точках пика: на обоих склонах и в максимуме);

по отношению откликов пика (например, площади) на двух разных длинах волн, полученных для стандарта и пробы. Для одного и того же вещества на двух разных длинах волн при неизменном времени миграции отношение площадей в стандартном растворе и растворе пробы должно быть постоянным. Длины волн выбирают так, чтобы компонент имел при этом разное поглощение, т. е. высота или площадь пика при двух разных длинах волн были бы различными.