
- •Міністерство освіти і науки україни
- •Теплотехніка Теоретичні, практичні та довідкові матеріали Навчально-методичний посібник для самостійного опанування
- •Ардашев в.О., п’ятак о.В. “Теплотехніка. Теоретичні, практичні та довідкові матеріали”. Навчально-методичний посібник для самостійного опанування. – Херсон, хнту, 2008. - 188 с.
- •1. Параметри стану робочих тіл
- •1.1. Основні розрахункові рівняння
- •У бас: Од. Маси – 1 фунт (lbm). Сила - паундаль
- •Для двох різних станів газу
- •Газові суміші
- •Ентропія суміші
- •Ентропія змішування
- •Розв’язання задач
- •1.3. Задачі для самостійного розв’язання
- •Питання для самоперевірки та контролю засвоєння знань
- •2. Перший та другий закони термодинаміки
- •2.1.Основні розрахункові рівняння
- •2.1.1. Перший закон
- •2.1.2. Другий закон
- •2.2. Розв’язання задач
- •Незалежність теплоємності від температури
- •Лінійна залежність
- •3. Нелінійна залежність
- •2.3. Задачі для самостійного розв’язання
- •Питання для самоперевірки та контролю засвоєння знань
- •3. Термодинамічні процеси ідеальних газів
- •Основні розрахункові рівняння
- •Теплоємність суміші газів
- •3.2. Розв’язання задач
- •3.3. Задачі для самостійного розв’язання
- •3.4. Питання для самоперевірки та контролю засвоєння знань
- •4. Термодинамічні процеси водяної пари
- •4.1. Основні розрахункові рівняння
- •4.2. Розв’язання задач
- •Довжина колектора
- •4.3. Задачі для самостійного розв’язання
- •Питання для самоперевірки та контролю засвоєння знань
- •5. Термодинамічні процеси вологого повітря
- •5.1. Основні розрахункові рівняння
- •5.2. Розв’язання задач
- •Кількість вологи у повітрі при початкових параметрах
- •У загальному випадку точка суміші визначається за правилом важеля:
- •1. Визначення параметрів повітря в характерних точках процесу
- •2. Витрати теплоти на нагрівання повітря в калорифері
- •3. Побудова процесів вологого повітря в і-d діаграмі
- •4. Кількість вологи, відібраної від пряжі в сушарці
- •5. Витрати теплоти і кількість відібраної вологи при відсутності процесу змішування потоків повітря
- •5.3. Задачі для самостійного розв’язання
- •Питання для самоперевірки та контролю засвоєння знань
- •6. Цикли теплових двигунів
- •6.1. Прямі і необоротні термодинамічні цикли
- •6.2. Процеси стиснення в компрессорах
- •6.3. Цикли двигунів внутрішнього згоряння
- •6.4. Цикли газотурбінних установок
- •6.5. Цикл Ренкіна паросилової установки
- •6.6. Цикл парокомпресійної холодильної установки
- •6.7. Розв’язання задач
- •1. Розрахунок параметрів стану в характерних точках
- •2. Розрахунок робіт компресора
- •К.К.Д. Компресора та потужність приводу
- •Параметри стиснення в трьохступінчастому компресорі
- •5. Побудова діаграм
- •1. Розрахунок термічних параметрів стану в характерних точках циклу
- •Зображення циклу в р-V і t-s координатах
- •2. Визначення термічного к.К.Д. І роботи циклу
- •3.Порівняння термічного к.К.Д. Циклу гту з термічним к.К.Д. Циклу Карно
- •Побудова циклу в p-V і t-s координатах
- •6. Порівняння термічного к.К.Д. Розрахованого циклу з термічним к.К.Д. Циклу двигуна внутрішнього згоряння
- •Зображення циклу в p-V і т-s координатах
- •Розрахунок параметрів стану в характерних точках циклу
- •Розрахунок кількості теплоти, роботи і зміни внутрішньої енергії в термодинамічних процесах, що складають цикл
- •Визначення термічного і внутрішнього к.К.Д. Циклу
- •4. Порівняння термічного к.К.Д. Даного циклу з термічним к.К.Д. Циклу Карно
- •5. Побудова розрахованого циклу в р-V і т-s координатах
- •6. Розрахунок зміни термічного к.К.Д. Циклу при зміні тиску і температури пари перед турбіною і зниження тиску пари, що відробило, після турбіни
- •7. Розрахунок годинної витрати палива
- •Визначення параметрів стану в характерних точках циклу
- •Розрахунок питомої холодопродуктивності, кількості теплоти, відданої в навколишнє середовище, витрат роботи в компресорі, холодильного коефіцієнта, роботи циклу
- •3. Побудова розрахованого циклу в р-V і т-s координатах
- •4. Побудова залежності холодильного коефіцієнта від витрат роботи в компресорі
- •5. Розрахунок витрати холодильного агента, витрати холодної води на конденсатор і теоретичної потужності приводу компресора
- •6. Побудова циклу холодильної установки в р-I діаграмі
- •6.8. Задачі для самостійного розв’язання
- •6.9. Питання для самоперевірки та контролю засвоєння знань
- •7. Процеси теплопередачі
- •7.1. Основні розрахункові рівняння
- •7.2. Розв’язання задач
- •7.3. Задачі для самостійного розв’язання
- •7.4. Питання для самоперевірки та контролю засвоєння знань
- •8. Конвективні процеси переносу теплоти
- •8.1. Основні розрахункові рівняння
- •8.2. Розв’язання задач
- •Розв’язання: Визначальна температура рідини
- •Визначаємо, чи має місце вплив конвекції на теплообмін у трубі. Визначальна температура
- •Коефіцієнт тепловіддачі від поверхні теплообмінника до повітря
- •Критична густина теплового потоку
- •8.3. Задачі для самостійного розв’язання
- •8.4. Питання для самоперевірки та контролю засвоєння знань
- •9. Процеси теплообміну випромінюванням
- •9.1. Основні розрахункові рівняння
- •9.2. Види променистих потоків
- •9.3. Теплообмін між тілами довільно розміщеними у просторі
- •9.4. Розв’язання задач
- •9.2. Задачі для самостійного розв’язання
- •9.4. Питання для самоперевірки та контролю засвоєння знань
- •10. Теплообмінні апарати
- •10.1. Основні розрахункові рівняння Рівняння теплового балансу:
- •Довжина трубок
- •10.2. Розв’язання задач
- •Живий перетин трубок
- •Еквівалентний діаметр міжтрубного простору
- •Розрахунок
- •Розрахунок коефіцієнта тепловіддачі від гарячої води до стінки труби (міжтрубний простір)
- •Розрахунок коефіцієнта тепловіддачі від стінки до холодної води (внутрішній простір труб)
- •Розрахунок величини поверхні нагрівання
- •Елементи конструктивного розрахунку теплообмінника Довжина трубок поверхні теплообмінника
- •Підбір теплообмінника
- •Характеристика теплообмінника
- •Розрахунок коефіцієнта тепловіддачі від гарячої води до внутрішньої поверхні труби
- •Розрахунок коефіцієнта тепловіддачі від ребристої поверхні до повітря
- •Теплова продуктивність однієї секції калорифера
- •10.3. Задачі для самостійного розв’язання
- •10.4. Питання для самоперевірки та контролю засвоєння знань
- •11. Процеси згоряння палива
- •11.1. Основні розрахункові рівняння
- •11.2. Розв’язання задач
- •11.3. Розв’язання задач самостійно
- •11.4. Питання для самоперевірки та контролю засвоєння знань
- •12. Тепловий баланс котлоагрегата
- •12.1. Основні розрахункові рівняння Теплота, що вноситься в топку котла (розпоряджувальна теплота)
- •Тепловий баланс може бути записаний
- •Розв’язання задач
- •Вихідні дані до складання теплового балансу
- •12.4. Питання для самоперевірки та контролю засвоєння знань
- •Література
- •Додатки
- •Приставки для утворення кратних і часткових одиниць
- •Молекулярні маси, густини та об’єми кіломолей при нормальних умовах і газові сталі найважливіших газів
- •Інтерполяційні формули для середніх масових та об’ємних теплоємностей газів
- •Теплоємність кисню1
- •Теплоємність водяної пари
- •Теплоємність повітря
- •Теплоємність азоту
- •Теплоємність окису вуглецю
- •Теплоємність водню
- •Теплоємність вуглекислого газу
- •Теплоємність сірчистого газу
- •Насичена водяна пара (по температурам) параметри надані в одиницях системи сі
- •Насичена водяна пара (по тискам) параметри надані в одиницях системи сі
- •Вода та перегріта водяна пара параметри надані в одиницях системи сі (числа зліва від східчастої лінії відносяться до води)
- •Густина та парціальний тиски повітря
- •Насичена водяна пара аміаку (нn3)
- •Насичена пара вуглекислоти (со2)
- •Фізичні властивості води на лінії насичення
- •Термодинамічні властивості перегрітої пари фреону-22
- •Значення параметрів а і в при конденсації водяної пари
- •Дані для визначення діаметра d' кожухотрубного теплообмінника
- •Технічна характеристика водоводяних підігрівників
Живий перетин трубок
fтр= 0,785 dвн2 n = 0,7850,0142190 = 0,0292 м2
Живий перетин міжтрубного простору
fм= 0,785(D2–n d2з) = 0,785(0,3722–1900,0162) = 0,0897м2
Еквівалентний діаметр міжтрубного простору
Задача № 3. Визначити густину теплового потоку в пароперегрівнику котлового агрегату, де має місце складний теплообмін з перевагою конвективної складової, якщо коефіцієнт тепловіддачі конвекцією 1=(80+N) Вт/(м2К), температура газів tр=1200oС, температура стінки труб tс=(800+3N)oС, степінь чорноти =0,7, коефіцієнт випромінювання абсолютного-чорного тіла со=5,67 Вт/(м2К4).
Дано: 1=80 Вт/(м2К); tр=1200oC; tс=800oC; =0,7; со=5,67 Вт/(м2К4)
q - ?
Розв’язання:
Коефіцієнт тепловіддачі випромінюванням
Густина теплового потоку
q = ( + )(tр - tс) = (80+336)(1200-800) = 166,4 кВт/м2.
Задача № 4. Виконати тепловий і конструктивний розрахунок секційного водоводяного підігрівника при таких умовах:
схема руху теплоносіїв |
- прямоток; |
температури гарячої води: - початкова - кінцева |
|
витрата холодної води |
- G2=20,0 кг/с; |
температури холодної води: - початкова - кінцева |
|
трубчата сталева поверхня нагрівання |
- dвн/dз=14/16 мм; |
теплопровідність матеріалу труб |
- с=58,2 Вт/(мК); |
товщина накипу |
- н=0,3 мм; |
теплопровідність накипу |
- н=3,45 Вт/(мК); |
коефіцієнт, що враховує втрати теплоти у навколишнє середовище |
- =0,97. |
Розрахунок
Схематичне зображення теплообмінника показано на рис.10.1.
Вода через штуцер 1 надходить у внутрішній простір трубок першої секції теплообмінника, потім по перехідному коліну направляється у внутрішній простір трубок другої секції теплообмінника і виходить через штуцер 2. Гаряча вода надходить через штуцер 3 у міжтрубний простір першої секції теплообмінника, потім по перехідному патрубку 5 вона направляється у міжтрубний простір другої секції теплообмінника і виходить через штуцер 4.
У теплообміннику шляхом теплопередачі здійснюється одночасний перенос теплоти конвекцією і теплопровідністю від гарячої до холодної води.
Теплова продуктивність теплообмінника визначається за рівнянням теплового балансу,
Q = G2c2(t2к – t2п) = 20 4,174 (70 – 10) = 5008,8 кВт,
де c2 – теплоємність теплоносія, кДж/(кгК).
Рис. 10.1. Водоводяний теплообмінник:
1 – штуцер входу холодної води; 2 - штуцер виходу холодної води; 3 - штуцер входу гарячої води; 4 - штуцер виходу гарячої води; 5 – перехідний патрубок; 6 - трубки теплообмінника; 7 - коліно; 8 – корпус; 9 – трубна решітка; 10 – фланець; 11- прокладка; 12 - міжтрубний простір; 13 – трубний простір.
Теплоємність холодної води визначається по середній температурі t2= 0,5(t2к + t2п) = 0,5(70 + 10) = 40 оС по табл.15 додатку, c2 =4,174 кДж/(кгК).
Теплоємність гарячої води визначається по середній температурі первинного теплоносіяt1 = 0,5(t1п + t1к) = 0,5(150 + 100) = 125 оС. По табл.20 додатку шляхом інтерполяції визначаємо c1=4,258 кДж/(кгК).
Використовуючи рівняння теплового балансу, визначаємо витрату первинного (гарячого) теплоносія
Для визначення кількості трубок в одній секції теплообмінника задаємося швидкістю руху холодної води у трубках w2 = 1,5 м/с і визначаємо площу поперечного переріза труб. Для чого використовуємо рівняння нерозривності потоку у виді
G = f w ,
де G – витрата теплоносія, кг/с;
f – поперечний переріз потоку, м2;
– густина рідини, кг/м3.
При t2 = 40 оС 2 = 922,2 кг/м3 по табл.20 додатку.
Площа поперечного переріза труб визначається так,
.
Кількість трубок у секції,
По табл.25 додатку знаходимо, що при розміщенні труб по вершинам рівностороннього трикутника найближче число труб відповідне отриманому значенню n = 87 дорівнює 91. Цьому числу труб відповідає діаметр апарата D'=10s. Приймаємо крок розміщення труб на трубній плиті
s =1,4 dз = 1,4 16 = 22 мм.
Тоді діаметр апарата D'= 10 22 = 220 мм. Внутрішній діаметр корпуса визначимо по співвідношенню
D = D' + dз + 2 k1 = 220 + 16 + 27 = 250 мм = 0,25 м,
де k1 – кільцевий зазор між крайніми трубами і корпусом. Величина k 1 приймається понад 6 мм, виходячи з конструктивних понять. Приймаємо k1 = 7 мм.
При відомій величині внутрішнього діаметра корпуса апарата визначається живий перетин міжтрубного простору і швидкість води в ньому.
Площа живого перетину міжтрубного простору визначається по рівнянню
fм = 0,785(D2–ndз2) = 0,785(0,252–910,0162) = 0,0308 м2
При середній температурі первинного теплоносія (гарячої води) t1=125оС по табл.20 додатку визначаємо густину 1=939 кг/м3.
Швидкість води в міжтрубному просторі
Оскільки за даними таблиці, число труб, розміщених в одній секції дорівнює 91, а не 87, то необхідно уточнити швидкість руху вторинного теплоносія (холодної води),