
- •Тема: Введение. Основные понятия и определения дисциплины
- •1.1 Введение
- •1.2 Задачи курса сопротивления материалов
- •1.3 Простейшие элементы конструкции
- •1.1 Введение
- •2. Допущения
- •Лекция 2 Тема: Метод сечений для определения внутренних усилий. Напряжения.
- •2.1 Деформации и перемещения
- •2.2 Метод сечений
- •2.3 Основные виды деформаций.
- •2.4 Напряжения
- •Лекция 3 растяжение и сжатие. Определение внутренних усилий
- •3.2 Напряжения при растяжении-сжатии
- •Определение деформаций и перемещений
- •Тема: механические свойства материалов при растяжении и сжатии
- •4.1 Механические свойства материалов. Диаграмма растяжения.
- •4.2 Важные характеристики пластичности материала.
- •4.3 Повышение условного предела текучести при повторных нагружениях (наклеп
- •1. Назначение и виды испытаний
- •2. Диаграммы растяжения и сжатия
- •3. Повышение условного предела текучести
- •Тема: Расчеты на прочность и жесткость при растяжении и сжатии
- •1. Общие принципы расчета элементов конструкции
- •2. Коэффициент запаса
- •3. Типы задач при расчете на прочность
- •Статические моменты сечений
- •Аналогично, статический момент относительно оси Оу
- •2. Моменты инерции сечения
- •1.Зависимость между моментами инерции относительно параллельных осей
- •3. Изменение моментов инерции при повороте осей
- •5. Зависимость между центробежными моментами инерции относительно двух систем параллельных осей
- •Тема: сдвиг
- •1. Основные понятия
- •3. Потенциальная энергия при сдвиге. Зависимость между тремя упругими постоянными
- •Тема: кручение
- •8.1 Крутящие моменты 8.2 Построение эпюры крутящих моментов 8.3 Пример
- •1. Построение эпюр крутящих моментов
- •Лекция 9 тема: определение напряжений в стержнях круглого сечения
- •9.1 Касательные напряжения при кручении круглого бруса 9.2 Деформации и перемещения при кручении валов 9.3 Пример определение напряжений в стержнях круглого сечения
- •На основании закона Гука при сдвиге имеем
- •4. Потенциальная энергия при кручении
- •Элементарная работа внутренних сил
- •Лекция 10 тема: изгиб
- •1. Общие понятия о деформации изгиба
- •2. Типы опор балок
- •3. Определение внутренних усилий при изгибе
- •4. Правило знаков для изгибающих моментов и поперечных сил
- •5. Зависимость между изгибающим моментом, поперечной силой и интенсивностью распределенной нагрузки
- •Взяв производную от обеих частей равенства (2), получим
- •1. Определение нормальных напряжений
- •Используя формулу (1), получаем
- •Лекция №13 тема: касательные напряжения при изгибе
- •13.1 Определение касательных напряжений
- •13.2 Формула журавского
- •13.3 Касательные напряжения при поперечном изгибе балок различных сечений
- •1. Определение касательных напряжений
- •Используя зависимость (2) (см. Лекцию№9), окончательно получаем
- •Эта зависимость впервые была установлена д.И. Журавским и поэтому называется его именем.
- •Решение этого уравнения имеет вид
3. Повышение условного предела текучести
при повторных нагружениях (наклеп)
Если при нагружении образца не был превышен предел упругости, то при разгружении все деформации полностью исчезнут и при повторном нагружении этот образец будет себя вести так же, как и при первом нагружении.
Если же образец был нагружен до напряжения, большего предела упругости, например до напряжения, соответствующего точке К диаграммы на рис. 2, то разгрузка пойдет по прямой КL, параллельной линии ОА. Упругая часть деформации (отрезок LM) исчезнет, пластическая же часть деформации (отрезок OL) останется.
Если материал нагружать снова, то диаграмма пойдет по прямой LK до самой точки K. Остаточное удлинение при разрыве будет измеряться величиной отрезка LR, т. е. иметь меньшую величину, чем при первичном однократном нагружении до разрыва. Линия нагрузки не совсем совпадает с линией разгрузки, но отклонение незначительно и его можно не учитывать. Следовательно, при повторных нагружениях образца, предварительно растянутого до возникновения в нем напряжений, больших предела текучести, предел пропорциональности повышается до того уровня, которого достигли напряжения при предшествующей нагрузке. Если между разгрузкой и повторным нагруженном был перерыв, то предел пропорциональности повышается еще больше.
Следует отметить, что диаграмма LKEN получаемая при повторном нагружении, не имеет площадки текучести, поэтому для образца, претерпевшего разгрузку и повторное нагружение, определяется условный предел текучести σ0,2, который, очевидно, выше предела текучести при первичном нагружении. В указанном смысле можно говорить о повышении предела текучести при повторном нагружении.
Явление повышения предела пропорциональности и снижения пластичности материала при повторных нагружениях называется наклепом. Наклеп во многих случаях является нежелательным явлением, так как наклепанный металл становится более хрупким.
Однако в целом ряде других случаев наклеп полезен и его создают искусственно, например, в деталях, подвергающихся воздействию переменных нагрузок.
Литература
Основная
Беляев Н.М. Сопротивление материалов, «Наука», М., 1976, [1], гл. I, §§1-5.
Дарков А.В., Шпиро Г.С. Сопротивление материалов, «Высшая школа», М., 1975, [2], гл. I, §§1.1-6.1.
Васильев В.З. Краткий курс сопротивления материалов с основами теории упругости, издание «Иван Феодоров», Санкт-Петербург, 2001г.
Смирнов А.Ф. Сопротивление материалов, «Высшая школа» М., 1975г.
Дополнительная.
1. Феодосьев В.И. Сопротивление материалов, «Наука», М., 1975г.
2. Таран В.И. Сопротивление материалов. Пособие по решению задач, издание «Демеу» Алматы, 1992, 204 с.
ЛЕКЦИЯ 5
Тема: Расчеты на прочность и жесткость при растяжении и сжатии
План лекции:
5.1 Общие методы расчета элементов конструкции:
Расчет по допускаемым напряжениям
Расчета по предельной нагрузке
Расчет по допускаемым перемещениям
5.2 Типы задач при расчете на прочность
5.3 Пример
1. Общие принципы расчета элементов конструкции
В результате расчета нужно получить ответ на вопрос, удовлетворяет или нет конструкция тем требованиям надежности, которые к ней предъявляются. Для этого необходимо, прежде всего, сформулировать те принципы, которые должны быть положены в основу оценки условий достаточной надежности. Без этого анализ конкретной конструкции сам по себе не может иметь целевого назначения. Так, если в конструкции определяются напряжения, надо предварительно четко представить себе, зачем это нужно и что с найденными напряжениями надлежит делать в дальнейшем. Точно так же, если определяется форма деформированного тела, надо заранее наметить путь дальнейшего использования полученного результата в оценке надежности конструкции. Все эти вопросы находят свое решение в выборе общего метода расчета.
Наиболее распространенным методом расчета деталей машин и элементов сооружений на прочность является расчет по напряжениям. В основу этого метода положено предположение, что критерием надежности конструкции является напряжение или, точнее говоря, напряженное состояние в точке.
Рассмотрим стержень с выточкой, представленный на рис.1, а. Можно показать, что при растяжении такого стержня напряжения в точках А, расположенных у вершины выточки, будут заметно больше, чем для гладкого стержня, растянутого теми же силами (рис. 1, б).
Рисунок 1
Если исходить из метода напряжений, то следует сделать вывод, что стержень с выточкой менее прочен, т. е. способен выдержать нагрузку меньшую, чем гладкий стержень. Однако это не всегда так. Для некоторых материалов, таких, как высокоуглеродистая сталь, стекло, камень и другие им подобные, стержень, имеющий выточку, действительно оказывается менее прочным, чем гладкий стержень. В случае, если оба стержня изготовлены из малоуглеродистой стали, меди, бронзы или алюминия, стержень с выточкой, вопреки ожиданиям, выдерживает не меньшую, а большую нагрузку. Таким образом, напряжения в точке не всегда и не полностью характеризуют условия разрушения конструкции.
В связи со сказанным в некоторых случаях используется метод расчета по разрушающим нагрузкам. В этом методе путем расчета определяются не напряжения, а наводится предельная нагрузка, которую может выдержать конструкция, не разрушаясь или не изменяя существенно свою форму. Предельная (разрушающая) нагрузка сопоставляется с рабочей нагрузкой, и на основании этого делаются выводы о степени прочности конструкции в рабочих условиях. Этот метод обладает тем недостатком, что расчетное определение разрушающей нагрузки возможно только в наиболее простых конструкциях.
Методы расчета выбираются в зависимости от условий работы конструкций и требований, которые к ней предъявляются. Если необходимо добиться наименьших изменений формы конструкции, например, при проектировании отражателя прожектора или системы зеркал астрономического прибора, производится расчет по допускаемым перемещениям, или, как говорят, расчет на жесткость. Это не исключает, понятно, одновременной проверки системы на прочность по напряжениям.
Наряду с упомянутыми методами расчета существуют многие другие методы, связанные с качественно отличными явлениями, такими, как устойчивость, эффект повторных нагрузок, динамическое воздействие и др.