
- •Содержание:
- •Международные обязательства России в области регулирования деятельности по обращению с отходами
- •Категории веществ, подлежащих регулированию Группы отходов
- •Категории отходов, требующие особого рассмотрения
- •Перечень опасных свойств
- •Операции по удалению
- •Общие требования к обращению с отходами
- •Требования к организации приема лома и отходов цветных металлов
- •Порядок приема, учета и хранения лома и отходов цветных металлов
- •Порядок учета отчуждаемого лома и отходов цветных металлов
- •Документы, необходимые при транспортировке лома и отходов цветных металлов
- •Экологический контроль. Защита прав юридических лиц и индивидуальных предпринимателей при проведении государственного контроля (надзора) и муниципального контроля
- •Органы власти, осуществляющие государственный контроль и надзор в сфере охраны окружающей среды на территории Саратовской области
- •Порядок обращения с твердыми бытовыми отходами.
- •Лицензирование деятельности в сфере обращения с отходами
- •1. Введение
- •2. Общие положения
- •2.1. Основные понятия
- •2.2. Лицензионные требования и условия осуществления деятельности по сбору, использованию, обезвреживанию, транспортировке, размещению отходов I-IV класса опасности
- •3. Порядок ведения лицензирования
- •3.1.Органы лицензирования и их полномочия
- •3.2. Условия и порядок выдачи лицензий
- •3.3. Лицензионные сборы.
- •4.Лицензионный контроль
- •Плата за негативное воздействие на окружающую среду
- •Требования к ведению журнала учета по форме отх-1
- •Порядок заполнения журнала учета по форме отх-1
- •Требования к ведению журнала учета по форме отх-2
- •Порядок заполнения журнала учета по форме отх-2
- •Журнал отх- 2 №______ учета эксплуатации объекта (ов) размещения отходов
- •Раздел 1 _________________________________________________
- •Раздел 2 __________________________________________________
- •Начат в ________ году
- •Технический отчет о неизменности производственного процесса и используемого сырья и об образующихся отходах
- •До 3 февраля
- •Территориальный орган
- •Росстатстат России
- •Управление контроля
- •Отчетность об образовании, использовании, обезвреживании и размещении отходов (за исключением статистической отчетности)
- •Требования природоохранного законодательства и основные правила обращения с опасными отходами
- •Общие правила размещения отходов
- •Транспортирование опасных отходов
- •Трансграничное перемещение отходов
- •Нормирование образования отходов и лимитов на их размещение
- •Опасные свойства отходов
- •Отнесение опасных отходов к классам опасности для окружающей природной среды
- •Паспортизация опасных отходов
- •Нормирование воздействия отходов на окружающую среду
- •Проект нормативов образования отходов и лимиты на их размещение отходов (пноолр) для индивидуальных предпринимателей и юридических лиц
- •В связи с
- •Регистрационный
- •Экологический менеджмент и аудит: правовой аспект
- •Правовая основа выдачи разрешений на сброс загрязняющих веществ в окружающую среду.
- •Основные понятия:
- •3. Порядок получения разрешений на сброс загрязняющих веществ в окружающую среду
- •Состав материалов к разрешению на сброс загрязняющих веществ в окружающую среду:
- •Порядок приостановления действия разрешения на сброс загрязняющих веществ в окружающую среду
- •6. Порядок возобновления действия разрешений на сбросы
- •7. Порядок переоформления разрешений на сбросы
- •8. Приложения:
- •9. Список используемой литературы:
- •Журнал учета стационарных источников загрязнения и их характеристик под-1
- •Журнал учета выполнения мероприятий по охране воздушного бассейна. Под-2.
- •Журнал учета работы газоочистных и пылеулавливающих установок. Под-3.
- •Глава 8. Административные правонарушения в области охраны окружающей природной среды и природопользования.
- •Технологии водоочистки и водоподготовки
- •1.Реагентный метод
- •2. Электрокоагуляционный метод
- •3. Гальванокоагуляционный метод
- •4.Ионообменная очистка
- •5. Метод жидкостной экстракции
- •6. Метод дозированного выпаривания
- •7. Метод электродиализа
- •8. Метод обратного осмоса и ультрафильтрации
- •9. Метод электролиза, в том числе на объемно-пористых электродах
- •10. Адсорбционный метод
- •Источники, классификация и характеристика отходов. Классификация отходов. Источники муниципальных отходов
- •Промышленные отходы.
- •Твердые бытовые отходы (тбо).
- •Морфологический состав тбо.
- •Изменчивость состава тбо.
- •Нормы накопления тбо.
- •Биологические и биохимические твердые отходы.
- •Сокращение потока отходов как способ борьбы с увеличением массы тбо.
- •Сбор и промежуточное хранение отходов.
- •Мусороперегрузочные станции (мпс) и вывоз тбо.
- •Основные методы переработки тбо. Захоронение.
- •Современная ситуация с захоронением отходов в России.
- •Побочные процессы при захоронении тбо. Старение при складировании и хранении тп и бо и его влияние на окружающую природную среду
- •Неорганические тп и бо.
- •Органические тп и бо.
- •Загрязнение атмосферы, почв и водоемов.
- •Эмиссия свалочных газов.
- •Виды негативного влияния сг
- •Экстракция сг.
- •Утилизация сг
- •Сжигание.
- •Продукты сжигания и возможности их использования.
- •Экологическая безопасность и перспективы мсз.
- •Рециклинг (утилизация, вторичное использование).
- •Мировой опыт обращения с тбо.
- •Современное состояние рециклинга тбо в России.
- •Компостирование как разновидность утилизации тбо.
- •Использование и обезвреживание твердых промышленных отходов Технологии переработки наиболее распространенных отходов
- •Тпо металлоперерабатывающих производственных подразделений и их переработка
- •Тпо металлургических производств и их переработка
- •Переработка отходов резины, в том числе изношенных автомобильных покрышек
- •Переработка отработанных автомобильных аккумуляторов
- •Ртутьсодержащие отходы и их переработка
- •Использование и обезвреживание нефтешламов
- •Источники углеродсодержащих отходов.
- •Технологии утилизации углеродсодержащих отходов
- •Технологии, основанные на химических методах обезвреживания
- •Технологии, основанные на электрохимических методах
- •Состояние проблемы обезвреживания отходов, содержащих полихлорированные дифенилы.
- •Одним из вариантов переработки тбпо является переработка в топках со шлаковым расплавом
- •Список используемой литературы
- •Экологический мониторинг с использованием систем дистанционного контроля
- •Использование аэрокосмического мониторинга.
- •Список используемой литературы
4.Ионообменная очистка
При ионообменной очистке из сточных вод гальванических производств удаляют соли тяжелых, щелочных и щелочноземельных металлов, свободные минеральные кислоты и щелочи, а также некоторые органические вещества.
Очистку сточных вод производят с помощью синтетических ионообменных смол (ионитов), представляющих собой практически нерастворимые в воде полимерные материалы, выпускаемые в виде гранул величиной 0,2-2 мм. В составе молекулы ионита имеется подвижный ион (катион или анион), способный в определенных условиях вступать в реакцию обмена с ионами аналогичного знака заряда, находящимися в водном растворе (сточной воде).
Ионный обмен происходит в эквивалентных отношениях и в большинстве случаев является обратимым. Реакции ионного обмена протекают вследствие разности химических потенциалов обменивающихся ионов. В общем виде эти реакции можно представить следующим образом:
mA + RmB = mRA + В.
Реакция идет до установления ионообменного равновесия. Скорость установления равновесия зависит от внешних и внутренних факторов: гидродинамического режима жидкости, концентрации обменивающихся ионов, структуры зерен ионита, его приницаемости для ионов. Процесс переноса вещества может быть представлен в виде нескольких стадий: 1) перенос ионов А из глубины потока жидкости к внешней поверхности пограничной жидкой пленки, окружающей зерно ионита; 2) диффузия ионов через пограничный слой; 3) переход иона через границу раздела фаз в зерно смолы; 4) диффузия ионов А внутри зерна смолы к ионообменным функциональным группам; 5) собственно химическая реакция двойного обмена ионов А и В; 6) диффузия ионов В внутри зерна ионита к границе раздела фаз; 7) переход ионов В через границу раздела фаз на внутреннюю поверхность пленки жидкости; 8) диффузия ионов В через пленку; 9) диффузия ионов В в глубь потока жидкости.
Скорость ионного обмена определяется самой медленной из этих стадий - диффузией в пленке жидкости либо диффузией в зерне ионита. Химическая реакция ионного обмена происходит быстро и не определяет суммарную скорость процесса.
В соответствии со способностью обменивать свои подвижные ионы на катионы или анионы все иониты делятся на две группы:
катиониты и аниониты. Различают сильно- и слабокислотные катиониты (в Н+ - или Na+ -форме), сильно- и слабоосновные аниониты (в ОН- - или солевой форме), а также иониты смешанного типа.
Иониты выпускают в виде порошка (размер частиц 0,04-0,07мм), зерен (0,3-2,0мм), волокнистого материала, листов и плиток. Крупнозернистые иониты предназначены для работы в фильтрах со слоями значительной высоты (1-3 м), порошкообразные - со слоями высотой 3-10 мм.
В процессе очистки сточных вод происходит насыщение ионитов катионами и анионами по следующим реакциям:
фильтр катионитовый
n R-H + Men+ = Rn-Me + nH+ сорбция
Rn-Me + пН+ = nR-H + Men+ регенерация
фильтр анионитовый
n R-OH + Ann- = Rn-An + nОН- сорбция
Rn-An + nNaOH = nR-OH + NanAn регенерация
Поглотительная способность ионитов характеризуется обменной ёмкостью, которая определяется числом эквивалентов ионов, поглощаемых единицей массы или объёма ионита. Различают полную, статическую и динамическую обменные ёмкости. Полная ёмкость - это количество поглощаемого вещества при полном насыщении единицы объёма или массы ионита. Статическая ёмкость - это обменная ёмкость ионита при равновесии в данных рабочих условиях. Статическая обменная ёмкость обычно меньше полной. Динамическая обменная ёмкость - это ёмкость ионита до "проскока" ионов в фильтрат, определяемая в условиях фильтрации. Динамическая ёмкость меньше статической.
Обменная ёмкость сильнокислотных катионитов и сильноосновных анионитов по отношению к различным ионам остается постоянной в широком интервале значений рН. Обменная емкость слабокислых катионитов и слабоосновных анионитов в большой степени зависит от величины рН и максимальна для первых в щелочной среде (рН>7), а для вторых - в кислой среде (рН<7).
Иониты в контакте с водой не растворяются, но поглощают некоторое количество воды и набухают. При набухании объем ионитов увеличивается в 1,5-3 раза. Степень набухания зависит от строения смолы, природы противоионов, от состава раствора.
Срок службы синтетических катионитов значительно больше, чем анионитов. Это объясняется низкой стабильностью групп, которые в анионитах выполняют роль фиксированных ионов.
Селективность обмена зависит от величины давления набухания в порах смолы и от размера пор ионита. При малом размере пор большие ионы не могут достичь внутренних активных Групп. В целях повышения селективности ионитов к определенным металлам в состав смол вводят вещества, способные образовывать с ионами этих металлов внутрикомплексные соединения (хелаты). Установлены ряды ионов по энергии их вытеснения из сильно- и слабокислотных катионитов. Например, для сильнокислотного сульфокатионита КУ-2 получен следующий ряд:
H+<Na+<NH4+<Mg2+<Zn2+<Co2+<Cu2+<Cd2+<Ni2+<Ca2+<Sr2+<Pb2+< Ва2+
Насыщенные иониты подвергают регенерации, перед которой их взрыхляют очищенной водой с интенсивностью 3-5 л/(с-м2). Регенерацию катионитов осуществляют 2-8 %-ными растворами минеральных кислот, регенерацию анионитов - 2-6 %-ными растворами едких щелочей. После регенерации проводят отмывку ионитов.
Растворы, образующиеся при регенерации ионитов (элюаты), подвергают дальнейшей переработке с целью утилизации содержащихся в них ценных химических продуктов или нейтрализации.
Принципиально возможны три варианта ионообменной очистки сточных вод гальванических производств:
очистка сточных вод, образующихся в отдельных технологических процессах - локальная очистка;
очистка общего стока гальванического цеха или участка;
очистка сточных вод, подвергнутых предварительному обезвреживанию с помощью химических реагентов для удаления из них минеральных солей.
На рис. 4 представлена принципиальная схема очистки промывных и сточных вод ионообменным методом при начальной концентрации ионов тяжелых металлов до 300 мг/л.
Рис. 4. Принципиальная схема очистки промывных и сточных вод ионообменным методом: 1-накопитель стоков, 2-насос, 3-механический фильтр, 4-сорбционный фильтр, 5-фильтры катионитовые, 6-фильтры анионитовые
С экономической точки зрения наиболее целесообразна ионообменная очистка не общего стока гальванического цеха, а локальная очистка. В этом случае переработка и возврат в производство концентрированных растворов, образующихся при регенерации ионитов и содержащих различные химические продукты, вызывает наименьшие трудности.
Ионообменный метод применим в основном для очистки сточных вод с общим солесодержанием до 3 г/л. Увеличение солесодержания воды снижает экономичность способа из-за снижения продолжительности межрегенерационного цикла работы ионитов и повышения расхода химикатов на их регенерацию.
Ионы цинка извлекают на сильнокислотном сульфокатионите КУ-2-8 в Н-форме или на карбоксильном катионите КБ-4 в Na-форме. Динамическая обменная емкость по Zn2+ катионита КУ-2 равна 2-3, а КБ-4 5 г-экв/кг. Сильнокислотные катиониты извлекают ионы цинка в широком диапазоне значений рН. Карбоксильные катиониты применяют при очистке нейтральных или слабощелочных сточных вод. Регенерацию сульфокатионитов производят 10 %-ным раствором серной кислоты; карбонильные катиониты регенерируют 5 %-ным раствором Na2S04. Концентрация цинка в элюатах составляет 6-9 г/л.
Ионы меди извлекают из сточных вод катионитом КУ-1 при рН=12-12,4. Обменная емкость катионита равна 1,7-2,3 г-экв/кг набухшей смолы. Регенерацию проводят 5 %-ным раствором НС1. Концентрация меди в элюатах достигает 15-17 г/л. Из кислых сточных вод медь извлекают сильнокислотными катионитами. Их регенерируют 10-20 %-ным раствором серной кислоты.
Ионы никеля извлекают из воды на катионите КУ-2-8, динамическая объемная емкость которого равна 2,1-2,4 г-экв/кг катионита. Скорость фильтрования сточных вод 12-15 м/ч. Регенерацию проводят 20 %-ным раствором серной кислоты со скоростью 0,5 м/ч. Полученные элюаты содержат 95 г/л никеля и их можно возвращать в ванну никелирования.
Для удаления из сточных вод катионов трехвалентного хрома применяют Н-катиониты, а хромат-ионы Сг042- и бихромат-ионы Cr2O72- извлекают на анионитах АВ-17, АН-18П, АН-25. Емкость анионитов по хрому не зависит от величины рН в пределах от 1 до 6 и значительно снижается с увеличением рН более 6. Скорость фильтрования принимают равной 10-15 м3/ч.