
- •Основы химической технологии
- •Раздел 1
- •1.1. Классификация химико-технологических процессов.
- •1.2. Основные технологические критерии эффективности
- •1.3. Технологические параметры хтп
- •1.3.1. Время пребывания исходных веществ в реакционной зоне.
- •Раздел 2
- •2.1. Каталитическое окисление аммиака
- •2.1.2. Введение
- •2.1.3. Теоретические основы процесса Химия процесса и равновесие.
- •Кинетика процесса.
- •2.1.4. Выбор оптимального технологического режима.
- •2.1.5. Схема лабораторной установки
- •2.1.6. Порядок проведения опыта
- •1. Подготовка колб для отбора газовых проб.
- •2. Техника проведения эксперимента.
- •Экспериментальные и расчетные данные
- •Контроль процесса
- •Анализ газовых фаз
- •Технологические расчеты
- •2.1.7. Задание
- •2.1.8. Техника безопасности
- •Материальный баланс контактного аппарата для окисления аммиака
- •Библиографический список
- •2.2. Электрохимическое получение гидроксида натрия, хлора и водорода диафрагменным методом
- •2.2.2. Введение
- •2.2.3. Теоретические основы процесса
- •Электродные реакции и термодинамика процесса электролиза водного раствора хлорида натрия в диафрагменной ванне.
- •Электродные реакции и потенциалы разряда ионов
- •Кинетика электродных процессов.
- •Выход по току
- •Удельный расход электроэнергии
- •Коэффициент использования электроэнергии
- •Конверсия сырья
- •2.2.4. Выбор оптимального технологического режима
- •Состав электролита
- •Материал электродов
- •Диафрагма
- •2.2.5. Экспериментальная часть
- •Исходные данные
- •Предварительные расчеты
- •Порядок выполнения работы
- •Экспериментальные данные
- •Контроль процесса Определение концентрации щелочи в католите.
- •1. В связи с техническими сложностями измерения объема подаваемого электролита и анализа всех продуктов при расчёте материального баланса делаем следующие допущения:
- •2. Последовательность расчета материального баланса
- •Материальный баланс процесса электролиза
- •Расчет технологических показателей
- •Технологические показатели процесса электролиза
- •2.2.6. Задание
- •2.2.5.Техника безопасности
- •Библиографический список
- •2.3. Контактное окисление оксида серы (IV).
- •2.3.2.Введение
- •2.3.3. Теоретические основы процесса
- •2.3.4. Выбор технологического режима.
- •Зависимость равновесного выхода η* от состава исходной газовой смеси
- •Зависимость равновесного выхода от температуры при различном давлении
- •2.3.5.Схема лабораторной установки
- •2.3.6.Предварительные расчеты
- •Значение давления водяных паров при t °с
- •2.3.7. Порядок проведения опыта.
- •Экспериментальные данные
- •Результаты проведения опыта
- •2.3.8. Расчет материального баланса.
- •2.3.9.Технологические расчеты
- •Показатели процесса окисления оксида серы (IV)
- •2.3.10. Задание
- •Приложение Определение степени превращения so2 в so3 (степени контактирования)
- •Библиографический список
- •Раздел 3
- •3.1. Получение метаналя (формальдегида) окислительным дегидрированием метанола
- •3.1.1. Цель работы
- •3.1.2. Введение
- •3.1.3. Теоретические основы процесса.
- •3.1.5. Описание лабораторной установки
- •3.1.6. Предварительные расчеты
- •3.1.7. Порядок проведения опыта
- •Исходные и экспериментальные данные
- •Технологические параметры и критерии процесса
- •Экспериментальные данные
- •3.1.8. Контроль процесса
- •3.1.9. Расчет материального баланса контактного аппарата.
- •Материальный баланс контактного аппарата для получения формальдегида.
- •3.1.10. Задание
- •3.2.3. Теоретические основы процесса
- •3.2.5. Описание лабораторной установки.
- •3.2.6. Порядок проведения опыта.
- •Исходные и экспериментальные данные
- •Объем спирта, поступившего в реактор……………………….…... Мл
- •Контроль процесса
- •Экспериментальные результаты опыта.
- •Данные хроматографического анализа контактного газа
- •3.2.7. Расчет материального баланса реактора
- •Материальный баланс реактора синтеза бутадиена.
- •3.2.8. Задание
- •3.3.3. Теоретические основы процесса
- •Механизм превращения углеводородов в процессе пиролиза
- •3.3.4. Выбор оптимального технологического режима
- •3.3.5. Описание лабораторной установки
- •3.3.6. Порядок проведения опыта
- •Исходные и экспериментальные данные
- •Экспериментальные данные проведения опыта
- •3.3.7. Расчет материального баланса пиролиза
- •3.3.8. Задание
- •Библиографический список.
- •Раздел 4
- •4.1. Хроматографический анализ
- •Характеристики хроматографических пиков
Раздел 2
Технология неорганических веществ
2.1. Каталитическое окисление аммиака
2.1.1. Цель работы. Знакомство с основными закономерностями и обоснованием выбора условий реализации сложного, необратимого, каталитического, гетерогенного процесса и расчет основных технологических показателей.
2.1.2. Введение
В настоящее время практически единственным промышленным способом получения азотной кислоты является контактное окисление аммиака кислородом воздуха с последующим поглощением полученных оксидов водой. Стадия окисления аммиака во многом, определяет показатели всего производства азотной кислоты: от условий и качества ее проведения зависят расходные коэффициенты по аммиаку, платиновым металлам, энергии, т.е. основные показатели, влияющие на экономику процесса. Процесс окисления аммиака - сложный и может с одинаковой вероятностью протекать как с образованием оксида азота (II), так и молекулярного азота и оксида азота (I). В этом случае определяющими факторами являются активность и селективность используемого катализатора и оптимизация технологических условий процесса.
2.1.3. Теоретические основы процесса Химия процесса и равновесие.
Окисление аммиака кислородом воздуха до оксида азота (II) является первой стадией процесса получения азотной кислоты. Наряду с основной реакцией окисления аммиака до оксида азота (II) (2.1.1)(здесь и далее приведены тепловые эффекты реакции):
4NH3 + 5O2 = 4NO + 6H2O 946 кДж/моль (2.1.1)
происходит окисление аммиака до элементарного азота и оксида азота (I):
4NH3 + 3O2 = 2N2 + 6H2O 1328 кДж/моль (2.1.2)
4NH3 + 4O2 = 2N2O + 6H2O 1156 кДж/моль (2.1.3)
При определенных условиях возможна диссоциация аммиака
2NH3 = N2 + 3H2 – 91 кДж/моль (2.1.4)
а также последовательные реакции, приводящие к образованию элементарного азота (2.1.5 и 2.1.6):
2NO = N2 + O2 180 кДж/моль (2.1.5)
4NH3 + 6NO = 5N2 + 6H2O 1810 кДж/моль (2.1.6)
Таким образом, окисление аммиака - процесс сложный
Константы равновесия реакций (2.1.1-2.1.3) характеризуются очень большими величинами (значительно больше 102) и, следовательно, все эти реакции необратимы. При этом наиболее вероятной с термодинамической точки зрения является реакция (2.1.2).
При повышении температуры на 100С значения констант равновесия реакций (2.1.1 – 2.1.3) уменьшаются на несколько порядков, но, несмотря на это, даже при температуре 1000С эти экзотермические реакции остаются практически полностью смещёнными в сторону образования продуктов окисления.
Реакция диссоциации аммиака (2.1.4) в интервале температур от -86 до 500°С обратима, при температурах выше 500°С она почти нацело смещена в сторону продуктов разложения аммиака. Например, при 800°С и 0.1 МПа равновесная концентрация аммиака составляет 0.011%, а при 1 МПа - 0.12 % объем.
Таким образом, в широком диапазоне изменения температуры исходное вещество (аммиак) нацело превращается в конечные продукты. Поскольку окисление аммиака - процесс сложный, и кроме оксида азота (II) получаются побочные продукты: азот и оксид азота (I), то выбор условий проведения процесса определяется необходимостью направить взаимодействие исходных веществ по пути образования оксида азота (II). С учетом практической необратимости рассматриваемых реакций, этого можно достичь только путем создания условий, при которых скорость основной реакции будет значительно превышать скорости побочных реакций. И чем значительней будет эта разность скоростей, тем выше будет практический выход оксида азота (II).