
- •Основы химической технологии
- •Раздел 1
- •1.1. Классификация химико-технологических процессов.
- •1.2. Основные технологические критерии эффективности
- •1.3. Технологические параметры хтп
- •1.3.1. Время пребывания исходных веществ в реакционной зоне.
- •Раздел 2
- •2.1. Каталитическое окисление аммиака
- •2.1.2. Введение
- •2.1.3. Теоретические основы процесса Химия процесса и равновесие.
- •Кинетика процесса.
- •2.1.4. Выбор оптимального технологического режима.
- •2.1.5. Схема лабораторной установки
- •2.1.6. Порядок проведения опыта
- •1. Подготовка колб для отбора газовых проб.
- •2. Техника проведения эксперимента.
- •Экспериментальные и расчетные данные
- •Контроль процесса
- •Анализ газовых фаз
- •Технологические расчеты
- •2.1.7. Задание
- •2.1.8. Техника безопасности
- •Материальный баланс контактного аппарата для окисления аммиака
- •Библиографический список
- •2.2. Электрохимическое получение гидроксида натрия, хлора и водорода диафрагменным методом
- •2.2.2. Введение
- •2.2.3. Теоретические основы процесса
- •Электродные реакции и термодинамика процесса электролиза водного раствора хлорида натрия в диафрагменной ванне.
- •Электродные реакции и потенциалы разряда ионов
- •Кинетика электродных процессов.
- •Выход по току
- •Удельный расход электроэнергии
- •Коэффициент использования электроэнергии
- •Конверсия сырья
- •2.2.4. Выбор оптимального технологического режима
- •Состав электролита
- •Материал электродов
- •Диафрагма
- •2.2.5. Экспериментальная часть
- •Исходные данные
- •Предварительные расчеты
- •Порядок выполнения работы
- •Экспериментальные данные
- •Контроль процесса Определение концентрации щелочи в католите.
- •1. В связи с техническими сложностями измерения объема подаваемого электролита и анализа всех продуктов при расчёте материального баланса делаем следующие допущения:
- •2. Последовательность расчета материального баланса
- •Материальный баланс процесса электролиза
- •Расчет технологических показателей
- •Технологические показатели процесса электролиза
- •2.2.6. Задание
- •2.2.5.Техника безопасности
- •Библиографический список
- •2.3. Контактное окисление оксида серы (IV).
- •2.3.2.Введение
- •2.3.3. Теоретические основы процесса
- •2.3.4. Выбор технологического режима.
- •Зависимость равновесного выхода η* от состава исходной газовой смеси
- •Зависимость равновесного выхода от температуры при различном давлении
- •2.3.5.Схема лабораторной установки
- •2.3.6.Предварительные расчеты
- •Значение давления водяных паров при t °с
- •2.3.7. Порядок проведения опыта.
- •Экспериментальные данные
- •Результаты проведения опыта
- •2.3.8. Расчет материального баланса.
- •2.3.9.Технологические расчеты
- •Показатели процесса окисления оксида серы (IV)
- •2.3.10. Задание
- •Приложение Определение степени превращения so2 в so3 (степени контактирования)
- •Библиографический список
- •Раздел 3
- •3.1. Получение метаналя (формальдегида) окислительным дегидрированием метанола
- •3.1.1. Цель работы
- •3.1.2. Введение
- •3.1.3. Теоретические основы процесса.
- •3.1.5. Описание лабораторной установки
- •3.1.6. Предварительные расчеты
- •3.1.7. Порядок проведения опыта
- •Исходные и экспериментальные данные
- •Технологические параметры и критерии процесса
- •Экспериментальные данные
- •3.1.8. Контроль процесса
- •3.1.9. Расчет материального баланса контактного аппарата.
- •Материальный баланс контактного аппарата для получения формальдегида.
- •3.1.10. Задание
- •3.2.3. Теоретические основы процесса
- •3.2.5. Описание лабораторной установки.
- •3.2.6. Порядок проведения опыта.
- •Исходные и экспериментальные данные
- •Объем спирта, поступившего в реактор……………………….…... Мл
- •Контроль процесса
- •Экспериментальные результаты опыта.
- •Данные хроматографического анализа контактного газа
- •3.2.7. Расчет материального баланса реактора
- •Материальный баланс реактора синтеза бутадиена.
- •3.2.8. Задание
- •3.3.3. Теоретические основы процесса
- •Механизм превращения углеводородов в процессе пиролиза
- •3.3.4. Выбор оптимального технологического режима
- •3.3.5. Описание лабораторной установки
- •3.3.6. Порядок проведения опыта
- •Исходные и экспериментальные данные
- •Экспериментальные данные проведения опыта
- •3.3.7. Расчет материального баланса пиролиза
- •3.3.8. Задание
- •Библиографический список.
- •Раздел 4
- •4.1. Хроматографический анализ
- •Характеристики хроматографических пиков
2.3.4. Выбор технологического режима.
Температура. Для получения высокого выхода оксида серы (VI) необходима температура 400-425°С. Однако скорость процесса при этой температуре мала даже при наличии катализатора. Выбор температурного режима, обеспечивающего высокую скорость экзотермической обратимой реакции, довольно сложен, так как изменение температуры противоположным образом влияет на величину равновесного выхода продукта и скорость процесса (рис.2.3.2).
Если вести процесс при постоянной температуре 600°С, то реакция идет быстрее, но, в соответствии с состоянием равновесия, заканчивается при достижении значительно меньшей степени превращения, чем при 400°С. Для обеспечения и высокой интенсивности процесса и высокого выхода, необходимо проводить окисление оксида серы (IV) при меняющемся температурном режиме.
На рис.2.3.3 приведен график зависимости равновесного и практического выхода от температуры при различных временах контактирования. С увеличением времени контактирования максимум на кривых смещается в сторону более низких температур. Кривую, соединяющую максимумы на различных кривых, называют линией оптимальных температур (ЛОТ). При проведении процесса по линии оптимальных температур окисление оксида серы (IV) протекает с максимально возможными скоростями в каждый момент. Понижение температуры к концу процесса с 600 до 400°С позволяет получить высокий выход продукта при достаточной производительности процесса. Схема организации этого процесса приведена на рис.2.3. 4.
Соотношение исходных компонентов. Состав исходной газовой смеси также влияет на величину равновесного выхода и скорость окисления (табл. 2.3.2). Процесс ведут с избытком кислорода относительно стехиометрического. При этом возрастает скорость процесса и увеличивается равновесный выход продукта.
Таблица 2.3.2.
Зависимость равновесного выхода η* от состава исходной газовой смеси
Состав газа, % объемн. |
Объемное отношение O 2 : SO2
|
Равновесный выход η* (при475°С и 0,1 МП а)
|
|
О2 |
SO2 |
||
16,7 13,9 11,0 8,15 5,5 |
3,0 5,0 7,0 9,0 11,0 |
5,57 2,78 1,57 0,9 0,5 |
97,16 96,75 96,07 94,61 92,20 |
Рис. 2.3.1. Влияние температуры на скорость реакции окисления оксида серы (IV) при постоянном времени контактирования
Рис.2.3.2. Изменение степени превращения оксида серы (IV) при различных температурных режимах: 1- 600°С, 2 – 450°С, 3 – 600-400°С
Рис.2.3.3. Зависимость выхода продукта η от температуры при различном времени контактирования.
Обычно газ, поступающий в реакционный аппарат с фильтрующими слоями катализатора, после обжига колчедана содержит 7% SO2, 11% О2 и 82% N2. При таком соотношении О2 и SO2 окисление оксида серы (IV) протекает достаточно полно и автотермично за счет тепла, выделяющегося в ходе окисления, что облегчает создание оптимального температурного режима в первом слое катализатора; при более высокой концентрации SO2 (8-8.5%) перегрев катализатора может вывести его из строя. Дальнейшее увеличение отношения О2 к SO2 путем разбавления газа воздухом при незначительном увеличении выхода приводит к снижению концентрации SO2 в газе и к увеличению объема поступающего на контактирование газа.
Объемное отношение О2 к SO2 может быть увеличено путем разбавления поступающего из обжиговых печей газа воздухом, обогащенным кислородом. Это значительно интенсифицирует процесс, но удорожает и усложняет его.
Давление. В зависимости от выбранной температуры эффективность воздействия давления различна. При низких температурах, когда равновесные степени превращения оксида серы (IV) высокие, давление незначительно сказывается на смещении равновесия, (табл.2.3.3). При высоких температурах, когда окисление происходит далеко не полностью, давление может стать одним из решающих факторов, обеспечивающих высокую степень превращения.
При применении повышенного давления уменьшаются объемы перерабатываемых газов и, следовательно, размеры аппаратов; увеличивается степень превращения и улучшается кинетика процесса; снижается металлоемкость и сокращаются производственные площади; появляется возможность концентрирования энергии и ее утилизации. Все это имеет большое значение для агрегатов большой единичной мощности.
Но применение повышенного давления ведет к усложнению аппаратуры, более высоким энергетическим затратам. Поэтому выбор давления определяется оптимизацией на основе экономических критериев эффективности процесса.
Организация проведения процесса по ЛОТ. Конструкция контактного аппарата должна обеспечивать возможность проведения каталитического окисления оксида серы (IV) в условиях оптимального технологического режима. В данном случае особенно важно обеспечить снижение температуры по высоте слоя в соответствии с линией оптимальных температур (рис.2.3.4).
Таблица 2.3.3.