
- •Основы химической технологии
- •Раздел 1
- •1.1. Классификация химико-технологических процессов.
- •1.2. Основные технологические критерии эффективности
- •1.3. Технологические параметры хтп
- •1.3.1. Время пребывания исходных веществ в реакционной зоне.
- •Раздел 2
- •2.1. Каталитическое окисление аммиака
- •2.1.2. Введение
- •2.1.3. Теоретические основы процесса Химия процесса и равновесие.
- •Кинетика процесса.
- •2.1.4. Выбор оптимального технологического режима.
- •2.1.5. Схема лабораторной установки
- •2.1.6. Порядок проведения опыта
- •1. Подготовка колб для отбора газовых проб.
- •2. Техника проведения эксперимента.
- •Экспериментальные и расчетные данные
- •Контроль процесса
- •Анализ газовых фаз
- •Технологические расчеты
- •2.1.7. Задание
- •2.1.8. Техника безопасности
- •Материальный баланс контактного аппарата для окисления аммиака
- •Библиографический список
- •2.2. Электрохимическое получение гидроксида натрия, хлора и водорода диафрагменным методом
- •2.2.2. Введение
- •2.2.3. Теоретические основы процесса
- •Электродные реакции и термодинамика процесса электролиза водного раствора хлорида натрия в диафрагменной ванне.
- •Электродные реакции и потенциалы разряда ионов
- •Кинетика электродных процессов.
- •Выход по току
- •Удельный расход электроэнергии
- •Коэффициент использования электроэнергии
- •Конверсия сырья
- •2.2.4. Выбор оптимального технологического режима
- •Состав электролита
- •Материал электродов
- •Диафрагма
- •2.2.5. Экспериментальная часть
- •Исходные данные
- •Предварительные расчеты
- •Порядок выполнения работы
- •Экспериментальные данные
- •Контроль процесса Определение концентрации щелочи в католите.
- •1. В связи с техническими сложностями измерения объема подаваемого электролита и анализа всех продуктов при расчёте материального баланса делаем следующие допущения:
- •2. Последовательность расчета материального баланса
- •Материальный баланс процесса электролиза
- •Расчет технологических показателей
- •Технологические показатели процесса электролиза
- •2.2.6. Задание
- •2.2.5.Техника безопасности
- •Библиографический список
- •2.3. Контактное окисление оксида серы (IV).
- •2.3.2.Введение
- •2.3.3. Теоретические основы процесса
- •2.3.4. Выбор технологического режима.
- •Зависимость равновесного выхода η* от состава исходной газовой смеси
- •Зависимость равновесного выхода от температуры при различном давлении
- •2.3.5.Схема лабораторной установки
- •2.3.6.Предварительные расчеты
- •Значение давления водяных паров при t °с
- •2.3.7. Порядок проведения опыта.
- •Экспериментальные данные
- •Результаты проведения опыта
- •2.3.8. Расчет материального баланса.
- •2.3.9.Технологические расчеты
- •Показатели процесса окисления оксида серы (IV)
- •2.3.10. Задание
- •Приложение Определение степени превращения so2 в so3 (степени контактирования)
- •Библиографический список
- •Раздел 3
- •3.1. Получение метаналя (формальдегида) окислительным дегидрированием метанола
- •3.1.1. Цель работы
- •3.1.2. Введение
- •3.1.3. Теоретические основы процесса.
- •3.1.5. Описание лабораторной установки
- •3.1.6. Предварительные расчеты
- •3.1.7. Порядок проведения опыта
- •Исходные и экспериментальные данные
- •Технологические параметры и критерии процесса
- •Экспериментальные данные
- •3.1.8. Контроль процесса
- •3.1.9. Расчет материального баланса контактного аппарата.
- •Материальный баланс контактного аппарата для получения формальдегида.
- •3.1.10. Задание
- •3.2.3. Теоретические основы процесса
- •3.2.5. Описание лабораторной установки.
- •3.2.6. Порядок проведения опыта.
- •Исходные и экспериментальные данные
- •Объем спирта, поступившего в реактор……………………….…... Мл
- •Контроль процесса
- •Экспериментальные результаты опыта.
- •Данные хроматографического анализа контактного газа
- •3.2.7. Расчет материального баланса реактора
- •Материальный баланс реактора синтеза бутадиена.
- •3.2.8. Задание
- •3.3.3. Теоретические основы процесса
- •Механизм превращения углеводородов в процессе пиролиза
- •3.3.4. Выбор оптимального технологического режима
- •3.3.5. Описание лабораторной установки
- •3.3.6. Порядок проведения опыта
- •Исходные и экспериментальные данные
- •Экспериментальные данные проведения опыта
- •3.3.7. Расчет материального баланса пиролиза
- •3.3.8. Задание
- •Библиографический список.
- •Раздел 4
- •4.1. Хроматографический анализ
- •Характеристики хроматографических пиков
Выход по току
Выход по току – это отношение практически полученной массы продукта (Gпр.) в процессе электролиза к теоретически возможной (GT), рассчитанной по закону Фарадея:
(2.2.15)
В соответствии с первым законом Фарадея масса вещества (GТ), полученная при электролизе, пропорциональна количеству пропущенного электричества (Q) т.е., силе тока (I) и времени электролиза ():
(2.2.16)
где Эх – электрохимический эквивалент вещества, (г/Ач), который определяется по формуле:
(2.2.17)
М – молярная масса вещества, г/моль;
n – число электронов, участвующих в электродной реакции;
F – число Фарадея, 26,8 Ач/моль-экв.
I – сила тока, А
- время электролиза, ч
Для гидроксида натрия, хлора и водорода электрохимические эквиваленты соответственно равны (г/Ач):
(2.2.18)
(2.2.19)
(2.2.20)
Удельный расход электроэнергии
Теоретический расход электроэнергии на 1000 г целевого продукта(WT) рассчитывают по формуле:
,
Вт/кг (2.2.21)
где UT – теоретическое напряжение разложения, равное разности равновесных потенциалов анода и катода; для хлорида натрия в условиях промышленного электролиза UT = 2,1-2,2 В.
Подставляя в формулу (2.2.21) значение GT из (2.2.16) и сократив I, , получим:
,
Вт/кг (2.2.22)
На практике напряжение на электролизной ванне (Uпр.) значительно выше теоретического напряжения разложения, т. к. в реальных условиях необходимо учитывать перенапряжение на аноде и катоде, падение напряжения на диафрагме, в электролите, контактах и т. д. Кроме того, количество полученного продукта меньше теоретического, эту разницу учитывает выход по току. Поэтому удельный расход электроэнергии (WУД ) равен:
,
Вт/кг (2.2.23)
где Э – в долях единицы.
В соответствии с уравнением (2.2.23) удельный расход электроэнергии пропорционален напряжению на ванне и обратно пропорционален выходу по току. Поэтому все мероприятия, направленные на увеличение выхода по току и снижение напряжения на ванне, приводят к снижению удельного расхода электроэнергии.
Коэффициент использования электроэнергии
По существу коэффициент использования электроэнергии(N) является долей полезного использования электроэнергии, количественно его выражают как отношение теоретического расхода электроэнергии на единицу массы целевого продукта к фактическому расходу, выраженное в процентах:
%
(2.2.24)
С учетом (2.2.22) и (2.2.23), получим:
%
(2.2.25)
Степень использования электроэнергии тем выше, чем больше выход по току и ближе значения практического и теоретического напряжений. Поскольку выход по току для процесса получения гидроксида натрия изменяется на практике незначительно (93-98%), основной вклад в коэффициент использования электроэнергии вносит напряжение на ванне. Оно складывается из разности равновесных потенциалов анода (Ea) и катода (Ek) (35-42%), перенапряжений на аноде (а) и катоде (k) (23-26%), падения напряжения на диафрагме (Uд) (4-6%), в электролите (UЭ) (10-15%), на электродах и контактах (UК, 2-5%).
Uпр. = (Ea - Ek) + (а + k )+ UЭ + UК + UД (2.2.26)
В процессе работы эти соотношения могут изменяться, особенно в случае нарушения режимов процесса и возникновения неполадок: износ электродов, забивание диафрагмы, окисление контактов и др.