
- •Ответы к экзамену по Химии:
- •1)Основные химические законы и понятия.
- •2)Строение атомов. Модель атома по Резенфорду, по Бору.
- •3)Волновые свойства электрона. Принцип неопределённости Гейзенберга.
- •4)Квантовые числа. Главное, орбитальное, магнитное, спиновое числа.
- •5)Принцип Паули. Принцип наименьшей энергии. Правило Гунда. Порядок заполнения атомных орбиталей электронами.
- •6)Периодический закон д.И. Менделеева. Структура периодической системы.
- •7)Развитие периодического закона. Энергия ионизации, сродство к электрону, электроотрицательность.
- •8)Химическая связь и валентность.
- •9)Ковалентная связь. Свойства ковалентной связи. Понятие о теории гибридизации.
- •10)Ионная связь. Типы ковалентных молекул.
- •11)Межмолекулярные взаимодействия, их типы, характеристика.
- •12)Донорно-акцепторная связь. Водородная связь.
- •13)Металлическая связь. Структура твёрдых тел.
- •14)Элементы химической термодинамики. Первое начало термодинамики.
- •15)Внутренняя энергия и энтальпия. Термохимические уравнения. Теплоты образования и разложения веществ. Закон Гесса и следствия из него.
- •16)Элементы второго начала термодинамики. Энтропия.
- •17)Энергия Гиббса. Направленность химических процессов.
- •18)Скорость гомогенных реакций. Закон действия масс. Константа скорости реакции.
- •19)Влияние температуры на скорость гомогенных реакций. Химическое равновесие в гомогенных системах. Принцип Ле-Шателье.
- •20)Цепные реакции. Гомогенный катализ.
- •21)Скорость гетерогенных реакций. Гетерогенный катализ.
- •22)Общая характеристика растворов. Способы выражения концентрации растворов. Растворимость газов, твёрдых тел, жидкостей в жидкостях.
- •23)Первые и второй закон Рауля. Осмотическое давление. Закон Вант-Гоффа.
- •24)Водные растворы электролитов. Особенности растворов кислот, солей, оснований. Теория электролитической диссоциации.
- •25)Степень диссоциации. Виды электролитов. Константа диссоциации слабых электролитов.
- •26)Диссоциация воды. Водородный показатель.
- •27)Электродные потенциалы. Механизм возникновения. Зависимость потенциалов от природы электролитов и растворителей.
- •28)Устройство и назначение водородного электрода. Измерение стандартных электродных потенциалов металлов. Ряд напряжений металлов.
- •29)Теория гальванических элементов.
- •30)Уравнение Нернста. Концентрационные гальванические элементы. Поляризация и деполяризация. Элемент Лекланше.
- •31)Электролиз. Процессы, протекающие на аноде и катоде. Закон Фарадея.
- •32)Электролиз растворов с нерастворимыми электродами. Электролиз расплавов.
- •33)Электролиз растворов с растворимым анодом, его применение: гальваностегия, гальванопластика, электролитическое рафинирование.
- •34)Аккумуляторы. Устройство, принцип действия свинцового аккумулятора.
- •35)Топливные элементы.
- •36)Коррозия металлов. Виды коррозионных разрушений. Электрохимическая коррозия.
- •37)Химическая коррозия. Электрокоррозия. Скорость коррозии.
- •38)Методы защиты металлов от коррозии.
- •39)Классификация металлов. Кристаллическая структура, физические свойства металлов.
- •40)Получение металлов из руд. Способы получения металлов высокой чистоты.
- •41)Общие химический свойства металлов.
- •42)Лёгкие конструкционные материалы. Алюминий. Свойства, получение, применение в технике, важнейшие соединения.
- •43)Медь. Свойства, получение, применение в технике, важнейшие соединения.
- •44)Олово. Железо. Свойства, получение, применение, важнейшие соединения.
- •45)Высокомолекулярные соединения, их виды, способы получения вмс.
- •46)Получение высокомолекулярных веществ с помощью поликонденсации.
- •47)Применение полимеров. Основные полимеры, получаемые полимеризацией.
- •48)Основные полимеры, получаемые поликонденсацией. Фенолоформальдегидные смолы, полиамиды, полиэфирные смолы.
48)Основные полимеры, получаемые поликонденсацией. Фенолоформальдегидные смолы, полиамиды, полиэфирные смолы.
Ответ: Основные полимеры,
получаемые поликонденсацией:
1)Фенолоформальдегидные смолы (ФОРС) –
получают поликонденсацией фенола, в
присутствии кислот и щелочей, свойства
зависят от соотношения фенол формальдегида
и примесей катализатора, из них получают:
а)новолачные смолы (бакелит) –
термопластичны, но легко утверждаются
уротропином и получается пластмасса с
сетчатой структурой; б)Резольные смолы
(резит), термореактивы – и при нагреве
переходит в неплавкое растворимое
состояние; в)Фенопласты – с различным
наполнением, обладает высокими электро
изоляционными свойствами, высокой
химической стойкостью. 2)Капрон –
получают конденсацией аминокапроновой
кислоты:
Ненагруженные детали в машиностроении
и приборостроении, основная область
синтетические волокна в основе; 3)Нейлон
– (перлон, Анид) – получают конденсацией
адипиновой кислоты и Гексаметилендиамин:
;
4)Полиэтилентерефталат (лавсан) –
получается конденсацией кислоты и
этилен гликоля:
Основные области применения: высокопрочные
синтетические волокна на их основе.
Фенолоформальдегидные смолы: Они представляют собой продукты реакции конденсации фенолов или его гомологов (крезолов, ксиленолов) формальдегидом. Реакция конденсации протекает в присутствии катализаторов, которые могут быть как кислотного (HCl, H2SO4), так и щёлочного типа (NH4OH, Ba(OH)2, NaOH). В зависимости от природы и соотношения компонентов, а также от применяемого катализатора фенолоформальдегидные смолы делят на два вида: 1)термореактивные или резольные; 2)термопластичные или новолачные смолы.
Полиаиды: Полиамиды – пластические материалы, отличающиеся повышенной прочностью и термостойкостью, высокой химической стойкостью, стойкостью к истиранию, хорошими антифрикционными и удовлетворительными электрическими свойствами. Способны выдерживать циклические нагрузки. Сохраняют свои характеристики в широком диапазоне температур. Выдерживают стерилизацию паром до 140 °С. Сохраняют эластичность при низких температурах. Полиамиды растворяются в концентрированной серной кислоте, являющейся для них универсальным растворителем, а также в муравьиной, монохлоруксусной, трифторуксусной кислотах, в феноле, крезоле, хлорале, трифторэтаноле. Устойчивы к действию спиртов, щелочей, масел, бензина. К недостаткам полиамидов можно отнести высокое водопоглощение и низкую светостойкость. Физико-механические свойства полиамидов определяются количеством водородных связей на единицу длины макромолекулы, которая увеличивается в ряду ПА-12, ПА-610, ПА-6, ПА-66. Увеличение линейной плотности водородных связей в макромолекуле увеличивает температуру плавления и стеклования материала, улучшает теплостойкость и прочностные характеристики, но вместе с тем увеличивается водопоглощение, уменьшается стабильность свойств и размеров материалов, ухудшаются диэлектрические характеристики. Базовые свойства полиамидов можно менять введением в их состав различных добавок: антипиренов (неармированные полиамиды – одни из немногих термопластов, которые позволяют успешно применять экологические чистые негалогеновые антипирены), свето- и термо стабилизаторов, модификаторов ударной вязкости, гидрофобных добавки; минеральных наполнителей, стекловолокна. Полиамиды перерабатываются всеми известными методами переработки пластмасс. Хорошо обрабатываются фрезерованием, точением, сверлением и шлифованием. Легко свариваются высокочастотным методом. Хорошо окрашиваются.
Полиэфирные смолы: ПОЛИЭФИРНЫЕ СМОЛЫ – НАДЁЖНЫЙ МАТЕРИАЛ ДЛЯ ИЗГОТОВЛЕНИЯ СТЕКЛОПЛАСТИКА И ДРУГОЙ ПРОДУКЦИИ. Полиэфирные смолы – это специальные материалы, получаемые в результате поликонденсации между ненасыщенными дикарбоновыми кислотами и определёнными спиртами. При этом производство полиэфирных смол может осуществляться на основе, как многоатомных, так и ненасыщенных спиртов. Всё зависит от того, какими свойствами должны обладать готовые полиэфирные смолы. Полиэфирные смолы бывают насыщенными и ненасыщенными. Наибольшее же распространение в настоящий момент получили ненасыщенные полиэфирные смолы. Прежде всего, ненасыщенные полиэфирные смолы характеризуются тем, что они могут твердеть при невысокой температуре. Причём в процессе твердения ненасыщенные полиэфирные смолы не выделяют вредных веществ в атмосферу. Производство полиэфирных смол представляет собой достаточно сложный процесс, сопряжённый со многими проблемами. Так, чтобы наладить производство полиэфирных смол, необходимо обустроить цех, в основе работы которого должно лежать высокотехнологичное современное оборудование и использование передовых технологий изготовления. Обусловлено это тем, что полиэфирные смолы в основном применяются в тех областях промышленности, где предъявляются повышенные требованиям относительно качества материалов изготовления. Например, полиэфирные смолы сегодня используются в таких промышленных сферах, как судостроение, строительство жилых или нежилых зданий, изготовление автомобилей и пр. В большинстве случаев полиэфирные смолы применяются в качестве связующих материалов при изготовлении стеклопластиков. Используются полиэфирные смолы и для приготовления разнообразных лакокрасочных материалов, производства галантерейных изделий, пропитки стальных металлических отливок и обустройства наливных полов. В целом полиэфирные смолы являются достаточно универсальным материалом, область применения которого постоянно расширяется. Постоянно улучшается и технология производства полиэфирных смол. Объясняется это тем, что полиэфирные смолы должны удовлетворять растущим требованиям со стороны потребителей данного надёжного и проверенного временем материала.