Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_na_ekzamen_po_statistike.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
405.43 Кб
Скачать

Правило мажорантности средних величин

Если рассчитать все виды средних для одних и тех же исходных данных, то значения их окажутся неодинаковыми. Здесь действует правило мажорантности средних: с увеличением показателя степени m увеличивается и соответствующая средняя величина:

В статистической практике чаще, чем остальные виды средних взвешенных, используются средние арифметические и средние гармонические взвешенные.

  1. Средняя арифметическая - самый распространенный вид средней. Она используется, когда расчет осуществляется по не сгруппированным статистическим данным, где нужно получить среднее слагаемое. Средняя арифметическая - это такое среднее значение признака, при получении которого сохраняется неизменным общий объем признака в совокупности.

Формула средней арифметической (простой) имеет вид

  1. Основные свойства средней арифметической

- Произведение средней на сумму частот всегда равно сумме произведений вариант на частоты.

Другими словами, постоянный множитель может быть вынесен за знак средней

- Если от каждой варианты отнять (прибавить) какое-либо произвольное число, то новая средняя уменьшится (увеличится) на то же число:

- Если каждую варианту умножить (разделить) на какое-то произвольное число, то средняя арифметическая увеличится (уменьшится) во столько раз

- Если все частоты (веса) разделить или умножить на какое-либо число, то средняя арифметическая от этого не изменится. Дело в том, что веса при исчислении средней арифметической выполняют роль удельного веса (соотношений между группами по количеству единиц). Поэтому замена частот частностями не меняет средней.

- Сумма отклонений отдельных вариантов от средней арифметической всегда равняется нулю.

  1. Эту среднюю называют обратной средней арифметической, поскольку эта величина используется при k = -1.

Простая средняя гармоническая используется тогда, когда веса значений признака одинаковы. Ее формулу можно вывести из базовой формулы, подставив k = -1:

  1. Особый вид средних величин – структурные средние – применяется для изучения внутреннего строения рядов распределения значений признака, а также для оценки средней величины (степенного типа), если по имеющимся статистическим данным ее расчет не может быть выполнен (например, если бы в рассмотренном примере отсутствовали данные и об объеме производства, и о сумме затрат по группам предприятий).

В качестве структурных средних применяют показатели моды и медианы.

Мода и медиана определяются лишь структурой распределения. Поэтому их именуют структурными позиционными средними. Медиану и моду часто используют как среднюю характеристику в тех совокупностях, где расчет средней степенной невозможен или нецелесообразен.

  1. Мода - типичная величина, в том смысле, что она встречается в совокупности или объективно может встретиться чаще других. Она имеет важное значение для решения некоторых задач, например какой высоты должны быть предназначенные для массового потребления станки, столы и т. п., какое количество детей чаще всего встречается в семье, какое время дня является «пиковым» для работы предприятий общественного питания, электростанций, городского транспорта и др., какой уровень выполнения плана наиболее часто встречается в том или ином коллективе рабочих или предприятий и т. п.

Особенности применения моды:

1) если все значения вариационного ряда имеют одинаковую частоту, то говорят, что этот вариационный ряд не имеет моды;

2) если две соседних варианты имеют одинаковую доминирующую частоту, то мода вычисляется как среднее арифметическое этих вариант;

3) если две несоседних варианты имеют одинаковую доминирующую частоту, то такой вариационный ряд называется бимодальным;

4) если таких вариант более двух, то ряд полимодальный.

Определение модального интервала в случае интервального вариационного ряда:

1) с равными интервалами модальный интервал определяется по наибольшей частоте;

2) при неравных интервалах - по наибольшей плотности.

Формула определения моды при равных интервалах внутри модального интервала:

  1. Медиана - это значение изучаемого признака, приходящееся на середину ранжированной совокупности.

Порядок вычисления медианы:

при вычислении медианы интервального вариационного ряда сначала находят медианный интервал l*u I хы +h\, где Л - длина медианного интервала. Для этого можно использовать кумулятивное распределение частот или относительных частот. Медианному интервалу соответствует тот, в котором содержится накопленная частота, равная 1/2;

внутри найденного интервала расчет медианы производится по формуле:

где Wcm , - кумулятивная частота интервала, предшествующего медианному;

Wm- относительная частота медианного интервала.

Применение свойства медианы:

при проектировании оптимального положения остановок общественного транспорта; при проектировании складских помещений; при сооружении бензозаправок и т. д.

  1. Размах вариации (R) представляет собой разность между максимальным и минимальным значениями признака в изучаемой совокупности (R = Хmax- Xmin). Этот показатель дает самое общее представление о колеблемости изучаемого признака, так как показывает разницу только между предельными значениями вариантов. Зависимость от крайних значений признака придает размаху вариации неустойчивый, случайный характер.

Размах вариации не связан с частотами в вариационном ряду. т. е. с характером распределения. Размах вариации не дает никакой информации об особенностях исследуемых совокупностей и не позволяет оценить степень типичности полученных средних. Область применения этого показа-геля ограничена достаточно однородными совокупностями.

  1. Среднее линейное отклонение представляет собой среднюю арифметическую из абсолютных значений отклонений отдельных вариантов от их средней арифметической:

где d - среднее линейное отклонение;

| | - абсолютное значение (модуль) отклонения варианта от средней арифметической;

f-частота.

Первая формула применяется, если каждый из вариантов встречается в совокупности только один раз, а вторая - в рядах с неравными частотами. Необходимость использования в формулах среднего линейного отклонения модулей отклонений вариантов от средней вызвана тем, что алгебраическая сумма этих отклонений равна нулю по свойствам средней арифметической. Среднее линей­ное отклонение показывает, насколько в среднем колеблется величина признака у единиц исследуемой совокупности, и выражается в тех же единицах измерения, что и варианты.

  1. Дисперсия ( ) - средняя из квадратов отклоне­ний вариантов значений признака от их средней величины:

Или   для не сгруппированных данных,

 для сгруппированных данных.

Свойства дисперсии.

1. Дисперсия постоянной величины равна 0.

2. Уменьшение всех значений признака на одну и ту же величину не изменяет величину дисперсии:

 

3. Уменьшение всех значений признака в к раз уменьшает дисперсию в k2 раз: 

4. Средний квадрат отклонений, исчисленный от среднего арифметического, всегда будет меньше среднего квадрата отклонений, исчисляемого от любой другой величины:  Величина различия между ними вполне определенная, это квадрат разности между средней и этой условной величиной А.

  1.  - момент второго порядка;

  2. Среднее квадратическое отклонение   равно корню квад­ратному из дисперсии: §         для не сгруппированных данных 

§         для вариационного ряда .        Среднее квадратическое отклонение — это обобщающая ха­рактеристика размеров вариации признака в совокупности; оно показывает, на сколько в среднем отклоняются конкретные ва­рианты от их среднего значения; является абсолютной мерой колеблемости признака и выражается в тех же единицах, что и варианты, поэтому экономически хорошо интерпретируется.

  1. Коэффициент вариации используют не только для сравнительной оценки вариации единиц совокупности, но и как характеристику однородности совокупности. Совокупность считается количественно однородной, если коэффициент вариации не превышает 33 %.

Оценка степени интенсивности вариации возможна только для каждого отдельного признака и совокупности определенного состава. При этом при равенстве коэффициентов вариации для раз­личных признаков или в разных совокупностях вариация в одних случаях может считаться как сильная, а в других - как слабая. Различная сила, интенсивность вариации обусловлены объективны­ми причинами.

 

  1. Общая дисперсия   характеризует вариацию признака во всей совокупности, сложившуюся под влиянием всех факторов и условий.

  2. Внутригрупповая дисперсия оценивает вариацию признака, сложившуюся по влиянием других, не учитываемых в данном исследовании факторов и независящую от фактора группировки. Она определяется как средняя из групповых дисперсий.

  •  — дисперсия i-ой группы.

Все три дисперсии ( ) связаны между собой следующим равенством, которое известно как правило сложения дисперсий:

на этом соотношении строятся показатели, оценивающие влияние признака группировки на образование общей вариации. К ним относятся эмпирический коэффициент детерминации ( ) и эмпирическое корреляционное отношение ( )

  1. Внутригрупповой дисперсией называется средняя арифметическая дисперсий, где каждое слагаемое входит с весом объема группы.

  1. Межгрупповая дисперсия   измеряет систематическую вариацию, обусловленную влиянием фактора, по которому произведена группировка:

  •  — групповые средние,

  •  — численность единиц i-й группы

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]