
- •Введение
- •Основные понятия
- •Расчет сложной электрической цепи постоянного тока
- •Электрические однофазные цепи синусоидального тока
- •Особенности электромагнитных процессов в цепях переменного тока
- •Изображение синусоидальной функции времени радиус векторами в декартовой плоскости координат
- •Комплексное представление вектора
- •Законы Кирхгофа для электрической цепи синусоидального тока
- •Электрическая цепь с активным сопротивлением
- •Электрическая цепь с индуктивностью
- •Электрическая цепь с емкостью
- •Электрическая цепь при последовательном соединении элементов с r, l и c
- •Треугольник напряжений и сопротивлений
- •Резонанс напряжений
- •Электрическая цепь при параллельном соединении элементов с r, l и c
- •Резонанс токов
- •Повышение коэффициента мощности
- •Трехфазные электрические цепи Понятие о трехфазной системе электрических цепей
- •Получение трехфазной системы эдс
- •Соединение обмоток генератора и фаз приемника звездой
- •Соединение обмоток генератора и фаз приемника треугольником
- •Напряжение между нейтральными точками генератора и приемника
- •Мощность трехфазной системы
- •Переходные процессы в электрических цепях Основные понятия и принципы анализа переходных процессов
- •Переходные процессы при подключении к источнику постоянного напряжения цепи с последовательным соединением элементов с r и l
- •Переходные процессы при зарядке и разрядке конденсатора
- •Переходные процессы при подключении к источнику синусоидального напряжения цепи с последовательным соединением r и l
- •Переходные процессы при подключении к источнику синусоидального напряжения цепи с последовательным соединением r и с
- •Трансформаторы
- •Принцип действия трансформатора
- •Устройство трансформаторов Режимы работы трансформатора и его характеристики
- •Мощность, кпд, и коэффициент мощности трансформатора
- •Электрические машины постоянного тока
- •Принцип действия генератора постоянного тока
- •Классификация и параметры генераторов постоянного тока
- •Электродвижущая сила якоря
- •Принцип действия двигателя постоянного тока
- •Вращающий момент двигателя постоянного тока
- •Частота вращения двигателя и её регулирование
- •Потери мощности
- •Асинхронные машины Общие сведения
- •Устройство асинхронных двигателей Получение вращающегося магнитного потока
- •Создание вращающего момента
- •Частота вращения магнитного потока статора и скольжение
- •Энергетическая диаграмма и кпд асинхронного двигателя
- •Характеристики асинхронного двигателя
- •Основные понятия об электроприводе
- •Режим работы электродвигателей
- •Выбор мощности электродвигателя
- •Выбор типа электродвигателя
Принцип действия двигателя постоянного тока
Электрическая энергия подводится к обмоткам якоря и возбуждения двигателя постоянного тока, которые имеют такое же устройство, как и обмотки генератора. Благодаря коллектору подводимый постоянный ток меняет направление в проводниках обмотки якоря, когда при вращении якоря они переходят в другую параллельную ветвь, т. е. попадают в пространство под другим полюсом. Таким образом, направление тока в праводниках обмотки якоря, находящихся под данным полюсом, остается все время неизменным.
Как известно, на проводник с током, находящийся в магнитном поле, действует электромагнитная сила F, направление которой определяется правилом левой руки. При указанном на рисунке направлении тока в обмотке якоря и полярности полюсов якорь машины вращается под действием силы F против часовой стрелки. Таким образом, машина постоянного тока развивает вращающий момент и к ее валу может быть приложен тормозной момент – механическая нагрузка.
При вращении якоря двигателя проводники его обмотки пересекают магнитный поток и в них индуцируется ЭДС, направление которой определяется по правилу правой руки. На рисунке под каждым полюсом условно показан один проводник обмотки якоря с направлением тока Iя в нем и определенным согласно направлению вращения якоря направлением ЭДС якоря Е, значение которой определяется по формуле . Видно, что ЭДС якоря двигателя направлена противоположно току в нем, а следовательно, и подводимому напряжению U. Поэтому ЭДС якоря двигателя называется противо-ЭДС.
Для цепи обмотки якоря двигателя по второму закону Кирхгофа получаем
или
Это уравнение показывает, что приложенное к якорю напряжение уравновешивается противо-ЭДС якоря и падением напряжения в его обмотке. Так как у двигателя Iя>0, то U>Е. Но эта разность невелика (не превышает 8-10%), так как сопротивление обмотки якоря очень мало.
По способу включения обмотки возбуждения по отношению к обмотке якоря двигатели постоянного тока делятся на двигатели параллельного возбуждения, двигатели последовательного возбуждения и двигатели смешанного возбуждения.
Следует особо отметить, что машина постоянного тока является обратимой машиной, т. е. она может работать как генератор электрической энергии, если к ее валу подводится механический вращающий момент, и как двигатель, если к ее обмоткам подводится электрическая энергия.
Вращающий момент двигателя постоянного тока
Вращающий момент
электродвигателя
создается электромагнитными силами,
действующими на все проводники обмотки
якоря. Сила Fx,
действующая
на проводник обмотки якоря, находящийся
в точке х
окружности
якоря,
,
где Вх
– магнитная
индукция в точке х
окружности
якоря; l
– длина проводника; I
– ток в нем. Эта сила создает вращающий
момент
,
где D
– диаметр
якоря.
Сумма моментов Мх всех проводников создает электромагнитный вращающий момент двигателя
где N
– число
проводников обмотки якоря. Принимая в
расчет среднюю магнитную индукцию,
получаем
.
Тогда
Ток I
в проводнике якоря можно выразить через
ток якоря Iя:
.
Далее, если учесть, что
(τ
– полюсное деление), то вращающий момент
где
- постоянная
величина.
Таким образом, вращающий момент двигателя постоянного тока пропорционален току якоря и магнитному потоку. Именно поэтому при пуске двигателя для получения наибольшего пускового момента необходимо иметь наибольший магнитный поток (ток возбуждения). Вращающий момент называется электромагнитным моментом.
При работе двигателя в установившемся режиме (при п = const) вращающий и тормозной моменты равны по значению (по направлению они взаимно противоположны). При холостом ходе двигателя тормозным моментом является момент холостого хода М0, обусловленный трением в подшипниках, щеток о коллектор, вращающегося якоря о воздух, потерями мощности в стальном магнитопроводе. Момент холостого хода составляет 2-6% от номинального момента Мном. Таким образом, при холостом ходе
В режиме нагрузки уравнение равновесия моментов как условие устойчивого режима двигателя принимает вид
где M2 – тормозной момент, создаваемый приводимым во вращение механизмом на валу двигателя.
В переходных режимах (разгон, изменение нагрузки, остановка) вращающий момент уравновешивается, кроме того, динамическим моментом инерции, т. е.
где Mj – динамический момент инерции якоря и вращающегося с ним исполнительного механизма.