
- •Оглавление
- •3. Силовая преобразовательная техника
- •4.1.Устройство и принцип действия шифратора и дешифратора.
- •4.4Суммирующий и вычитающий счетчик.
- •4.5.Устройство и функциональные элементы микропроцессора.
- •Основное уравнение движения электропривода
- •Типовые статические нагрузки электропривода
- •Классификация режимов работы двигателей по условиям нагрева
- •Преобразователи для электроприводов постоянного тока (типы, характеристики, область применения)
- •Преобразователи для электроприводов переменного тока (типы, характеристики, область применения)
- •Регулируемые электроприводы постоянного тока с обратными связями по скорости, эдс, току
- •5.8 Основные показатели регулирования координат электропривода
- •Способы регулирования скорости электропривода постоянного тока
- •Способы регулирования скорости электропривода переменного тока
- •7.Теория электропривода
- •Построить лачх системы, заданной структурной схемой
- •Оценить прямым методом устойчивость системы, описываемой дифференциальным уравнением
- •Оценить устойчивость системы прямым методом
- •Оценить устойчивость системы с помощью критерия Гурвица
- •Оценить устойчивость системы по критерию Рауса
- •Оценить устойчивость системы по критерию Гурвица при
- •Оценить по критерию Михайлова устойчивость системы с характеристическим уравнением при
- •Оценить устойчивость по критерию Михайлова (форма 2) системы с характеристическим уравнением
- •Оценить устойчивость замкнутой системы по Михайлову (форма 2), если известно дифференциальное уравнение разомкнутой системы
- •Найти запасы устойчивости для системы
- •Оценить устойчивость замкнутой системы по критерию Найквиста, если передаточная функция разомкнутой системы равна
- •Найти запасы устойчивости по амплитуде и фазе замкнутой системы, если передаточная функция разомкнутой системы равна
- •8.23 Определить величину перерегулирования, времени регулирования и степень демпфирования по переходной характеристике выхода системы относительно возмущения
- •12.1 Внешнее электроснабжение. Схемы радиального и смешанного питания
- •12.2.Внешнее электроснабжение. Схемы магистрального и смешанного питания
- •12.3.Цеховое электроснабжение. Радиальные и магистральные схемы питания
- •12.4.Характерные схемы электроснабжения предприятий при питании их от энергосистем при наличии собственных электростанций
- •13.1.Релейно-контакторная схема автоматического регулирования мощности двух секций компенсирующих устройств в функции тока нагрузки.
- •13.4.Схема автоматического включения резерва на контакторах для линии низкого напряжения.
12.3.Цеховое электроснабжение. Радиальные и магистральные схемы питания
О
сновным
вопросом
распределения электроэнергии на низком
напряжении является выбор схемы.
Правильно составленная схема должна
обеспечивать надежность питания
электроприемников в соответствии со
степенью их ответственности, высокие
технико-экономические показатели и
удобство эксплуатации сети.
В
се
встречающиеся на практике схемы
представляют собой сочетания отдельных
элементов — фидеров, магистралей и
ответвлений, для которых мы примем
следующие определения:
фидер — линия, предназначенная для передачи электроэнергии от распределительного устройства (щита) к распределительному пункту, магистрали или отдельному электроприемнику;
магистраль — линия, предназначенная для передачи электроэнергии нескольким распределительным пунктам или электроприемникам, присоединенным к ней в разных точках,
ответвление — линия, отходящая:
а) от магистрали и предназначенная для передачи электроэнергии к одному распределительному пункту или электроприемнику,
б) от распределительного пункта (щитка) и предназначенная для передачи электроэнергии к одному электроприемнику или к нескольким мелким электроприемникам, включенным в «цепочку».
В дальнейшем все фидеры, магистрали и ответвления от последних к распределительным пунктам будут именоваться питающей сетью, а все прочие ответвления —распределительной сетью.
Один из основных вопросов, решаемых при проектировании цеховых сетей, — выбор между магистральной и радиальной схемами распределения энергии.
При магистральной схеме электроснабжения одна линия — магистраль — обслуживает, как указано, несколько распределительных пунктов или приемников, присоединенных к ней в различных ее точках, при радиальной схеме электроснабжения каждая линия является как бы лучом, соединяющим узел сети (подстанцию, распределительный пункт) с единственным потребителем. В общем комплексе сети эти схемы могут сочетаться.
Так, цеховое распределение может осуществляться магистралями, каждая из которых питает ряд пунктов, от последних же к приемникам могут отходить радиальные линии.
Радиальная схема, изображенная на рис. 1, а, применяется в тех случаях, когда имеются отдельные узлы достаточно больших по величине сосредоточенных нагрузок, по отношению к которым подстанция занимает более или менее центральное местоположение.
Рис. 1. Схемы распределения электрической энергии от подстанций к электроприемникам: а — радиальная; б — магистральная с сосредоточенными нагрузками; в — магистральная с распределенной нагрузкой.
При радиальной схеме отдельные достаточно мощные электроприемники могут получать питания непосредственно от подстанции, а группы менее мощных и близко расположенных друг к другу электроприемников — через посредство распределительных пунктов, устанавливаемых возможно ближе к геометрическому центру нагрузки.
Фидеры низкого напряжения присоединяются на подстанциях к главным распределительным щитам через рубильники и предохранители или через максимальные автоматы.
К числу радиальных схем с непосредственным питанием от подстанций относятся все схемы питания электроприемников высокого напряжения, либо от распределительного устройства высшего напряжения на подстанции, либо непосредственно от понизительного трансформатора, если принята схема «блок трансформатор — электроприемник».
Магистральные схемы электроснабжения применяются в следующих случаях:
а) когда нагрузка имеет сосредоточенный характер, но отдельные узлы ее оказываются расположенными в одном и том же направлении по отношению к подстанции и на сравнительно незначительных расстояниях друг от друга, причем абсолютные величины нагрузок отдельных узлов недостаточны для рационального применения радиальной схемы (рис. 1,6);
б) когда нагрузка имеет распределенный характер с той или иной степенью равномерности (рис. 1, в).
При магистральных схемах с сосредоточенными нагрузками присоединение отдельных групп электроприемников, так же как и при радиальных схемах, производится обычно через посредство распределительных пунктов.
Задача правильного размещения распределительных пунктов имеет особо важное значение. Основные положения, которыми необходимо руководствоваться при этом, сводятся к следующему:
а) протяженность фидеров и магистралей должна быть минимальной и трасса их должна быть удобной и доступной;
б) должны быть сведены к минимуму и, если возможно, вообще исключены случаи обратного (по отношению к направлению потока электроэнергии) питания электроприемников;
в) распределительные пункты должны размещаться в местах, удобных для обслуживания, и в то же время не мешать производственной работе и не загромождать проходов.
Электроприемники могут присоединяться к распределительным пунктам либо независимо один от другого, либо объединяться в группы — «цепочки» (рис. 2-б).
Рис. 2 Схемы присоединения электроприемников к распределительным пунктам: а — независимое присоединение; б — присоединение цепочкой.
Соединение в цепочку рекомендуется для электроприемников небольшой мощности, близко расположенных друг к другу, но значительно удаленных при этом от распределительного пункта, вследствие чего может быть получена значительная экономия в расходе проводов. При этом, однако, не следует допускать соединения в одну цепочку однофазных и трехфазных электроприемников.
Кроме того, по соображениям эксплуатационного характера не рекомендуется объединять в одну цепочку:
а) более трех электроприемников вообще;
б) электроприемники механизмов различного технологического назначения (например электродвигатели станков с электродвигателями сантехнических агрегатов).
При нагрузках, распределенных вдоль магистрали, подключение электроприемников к магистралям целесообразно осуществлять непосредственно, а не через распределительные пункты, как это принято в рассмотренных выше схемах.
В соответствии с этим к магистралям с распределенной нагрузкой предъявляются следующие два основных требования:
а) прокладка магистралей должна выполняться на возможно меньшей высоте, но не ниже 2,2 м от пола;
б) конструкция магистралей должна допускать частые ответвления к электроприемникам, а при прокладке в доступных местах исключать возможность прикосновения к токоведущим частям.
Этим требованиям удовлетворяют магистрали, выполненные в виде шинопроводов в закрытых металлических коробах.