
- •Г.В. Бабенко Математическая экономика
- •Г.В. Бабенко
- •Предисловие
- •Глава 1 посвящена вопросам финансовых вычислений - процентные вычисления, дисконтирование, расчет доходности в случае совершения операций несколько раз в году.
- •Глава 4 раскрывает подходы к расчетам, применяемым при определении параметров сделок по краткосрочному и долгосрочному страхованию жизни.
- •Введение
- •1. Финансовые вычисления
- •Проценты простые
- •1.1.1. Наращивание по простой процентной ставке
- •1.1.2 Сложные проценты
- •1.1.3 Наращивание по сложным процентам
- •1.1.4 Определение суммы по смешанным процентным ставкам
- •1.1.5 Эквивалентная ставка
- •1.1.6 Номинальная ставка
- •1.1.7 Эффективная ставка
- •1.2 Математическое дисконтирование и банковский учёт
- •1.2.1 Математическое дисконтирование
- •1.2.2 Банковский учёт или учёт векселей
- •1.3 Учёт платёжного обязательства с начислением простых процентов.
- •1.3.1 Наращение по простой процентной ставке
- •1.3.2. Дисконтирование по сложным годовым учётным ставкам
- •1.3.3 Наращение по сложным учётным ставкам
- •1.3.4 Наращение по сложной учётной ставке m раз в году.
- •Вопросы и задачи:
- •2. Наращение процентов и инфляция.
- •2.1. Консолидация платежей
- •2.2 Методы составления планов погашения обязательств
- •2.3 Обыкновенная годовая рента
- •2.4 Оценки инвестиционных проектов
- •2.4.1 Внутренняя норма окупаемости
- •2.4.2 Граничный дисконтный множитель
- •2.5 Барьерная ставка
- •Вопросы и задачи:
- •3. Риски и их измерители
- •3.1. Методы уменьшения финансового риска
- •3.2. Оптимизация портфеля ценных бумаг
- •Вопросы и задачи:
- •4. Распределение рисков в страховании
- •4.1. Актуарная математика
- •4.2 Основные вероятностные характеристики продолжительности жизни
- •4.3. Анализ моделей краткосрочного страхования жизни
- •Откуда получим, что
- •4.4 Анализ модели долгосрочного страхования
- •Вопросы и задачи
- •5. Линейное программирование
- •5.1 Основные понятия математического программирования экономических процессов
- •5.1.1 Исследование операций. Оптимальное решение.
- •5.1.2 Классификация оптимизационных методов и моделей
- •5.1.3 Основные понятия и этапы построения оптимизационных моделей
- •5.1.4 Примеры задач линейного программирования
- •5.1.5 Общая постановка задачи линейного программирования
- •5.1.6 Теоретические основы методов линейного программирования. Выпуклые множества точек
- •5.2 Геометрический метод решения задач линейного программирования
- •5.2.1 Свойства задачи линейного программирования
- •5.2.2Геометрическое изображение системы ограничений.
- •5.3 Симплексный метод
- •5.3.1 Геометрическая интерпретация симплексного метода
- •5.3.2 Аналитические методы поиска оптимального решения
- •5.3.3. Симплексные таблицы
- •5.3.4 Метод искусственного базиса
- •5.4 Двойственные задачи
- •5.4.1 Экономическая интерпретация двойственной задачи
- •5.4.2 Взаимно двойственные задачи линейного программирования и их свойства
- •5.4.3 Первая теорема двойственности
- •5.4.4 Вторая теорема двойственности
- •5.5 Транспортная задача.
- •5.5.1. Экономико-математическая модель транспортной задачи.
- •5.5.2 Нахождение первоначального базисного распределения поставок
- •5.5.3. Поиск оптимального решения методом потенциалов.
- •5.6. Открытая модель транспортной задачи.
- •Вопросы и задачи:
- •6. Управление запасами
- •6.1 Модели управления запасами в экономике
- •6.2 Управление запасами при случайном спросе и задержке в поставках
- •Вопросы и задачи.
- •Заключение
- •Библиографический список
5.4 Двойственные задачи
5.4.1 Экономическая интерпретация двойственной задачи
Каждой задаче линейного программирования соответствует другая задача, называемая двойственной или сопряженной по отношению к исходной. Теория двойственности оказалась полезной для проведения качественных исследований задач линейного программирования.
В разделе 1 была рассмотрена задача об использовании ресурсов (экономико-математическая модель и содержательная интерпретация этой задачи I представлены в левой части таблицы 4.1). В приведенной модели bi(i = 1, 2, ...,m) обозначает запас ресурса Si; аij - число единиц ресурса Si, потребляемого при производстве единицы продукции рj (j = 1,2,...,n); Сj - прибыль (выручка) от реализации единицы продукции pj (или цена продукции рj).
Предположим, что некоторая организация решила закупить ресурсы S1, S2, Sm предприятия и необходимо установить оптимальные цены на эти ресурсы y1, y2, …, ym.
Очевидно, что покупающая организация заинтересована в том, чтобы затраты на все ресурсы Z в количествах b1, b2, …, bm по ценам у1, у2, ..,уm соответственно были минимальны, т.е.
.
С другой стороны, предприятие, продающее ресурсы, заинтересовано в том, чтобы полученная выручка была не менее той суммы, которую предприятие может получить при переработке ресурсов в годовую продукцию, нa изготовление единицы продукции Р1 расходуется a11 единиц ресурса S1, а21 единиц ресурса S2, аi1 единиц ресурса Si, am1 единиц ресурса Sm по цене соответственно y1, y2, …,yi, …, ym. Поэтому для удовлетворения требований продавца затраты на ресурсы, потребляемые при изготовлении единицы продукции Р1, должны быть не менее эе цены с1, т.е.
Аналогично можно составить ограничения в виде неравенств по каждому виду продукции P1, P2, …, Pn. Экономико-математическая модель и содержательная интерпретация полученной таким образом двойственной задачи II приведены в правой части таблице 4.1. Цены ресурсов y1, y2, …, ym в экономической литературе получили различные названия: учётные, неявные, теневые. Смысл этих названий состоит в том, что это условные, «ненастоящие» цены. В отличие от «внешних» цен с1, с2, …, сn на продукцию, известных, как правило, до начала производства, цены ресурсов y1, y2, …, ym являются внутренними, так как они задаются извне, а определяются непосредственно в результате решения задачи, поэтому их чаще называют оценками ресурсов.
Таблица 5.4.1
Задача I (исходная) |
Задача II (двойственная) |
при ограничениях:
и условии неотрицательности
Составить такой план выпуска продукции Х = (х1, х2, …, хn), при котором прибыль (выручка) от реализации продукции будет максимальной при условии, что потребление ресурсов по каждому виду продукции не превзойдёт имеющихся запасов. |
при ограничениях:
и условии неотрицательности
Найти такой набор цен (оценок) ресурсов Y = (у1, у2, …, уm), при котором общие затраты на ресурсы будут минимальными при условии, что затраты на ресурсы при производстве каждого вида продукции будут не менее прибыли (выручки) от реализации этой продукции. |