
- •Г.В. Бабенко Математическая экономика
- •Г.В. Бабенко
- •Предисловие
- •Глава 1 посвящена вопросам финансовых вычислений - процентные вычисления, дисконтирование, расчет доходности в случае совершения операций несколько раз в году.
- •Глава 4 раскрывает подходы к расчетам, применяемым при определении параметров сделок по краткосрочному и долгосрочному страхованию жизни.
- •Введение
- •1. Финансовые вычисления
- •Проценты простые
- •1.1.1. Наращивание по простой процентной ставке
- •1.1.2 Сложные проценты
- •1.1.3 Наращивание по сложным процентам
- •1.1.4 Определение суммы по смешанным процентным ставкам
- •1.1.5 Эквивалентная ставка
- •1.1.6 Номинальная ставка
- •1.1.7 Эффективная ставка
- •1.2 Математическое дисконтирование и банковский учёт
- •1.2.1 Математическое дисконтирование
- •1.2.2 Банковский учёт или учёт векселей
- •1.3 Учёт платёжного обязательства с начислением простых процентов.
- •1.3.1 Наращение по простой процентной ставке
- •1.3.2. Дисконтирование по сложным годовым учётным ставкам
- •1.3.3 Наращение по сложным учётным ставкам
- •1.3.4 Наращение по сложной учётной ставке m раз в году.
- •Вопросы и задачи:
- •2. Наращение процентов и инфляция.
- •2.1. Консолидация платежей
- •2.2 Методы составления планов погашения обязательств
- •2.3 Обыкновенная годовая рента
- •2.4 Оценки инвестиционных проектов
- •2.4.1 Внутренняя норма окупаемости
- •2.4.2 Граничный дисконтный множитель
- •2.5 Барьерная ставка
- •Вопросы и задачи:
- •3. Риски и их измерители
- •3.1. Методы уменьшения финансового риска
- •3.2. Оптимизация портфеля ценных бумаг
- •Вопросы и задачи:
- •4. Распределение рисков в страховании
- •4.1. Актуарная математика
- •4.2 Основные вероятностные характеристики продолжительности жизни
- •4.3. Анализ моделей краткосрочного страхования жизни
- •Откуда получим, что
- •4.4 Анализ модели долгосрочного страхования
- •Вопросы и задачи
- •5. Линейное программирование
- •5.1 Основные понятия математического программирования экономических процессов
- •5.1.1 Исследование операций. Оптимальное решение.
- •5.1.2 Классификация оптимизационных методов и моделей
- •5.1.3 Основные понятия и этапы построения оптимизационных моделей
- •5.1.4 Примеры задач линейного программирования
- •5.1.5 Общая постановка задачи линейного программирования
- •5.1.6 Теоретические основы методов линейного программирования. Выпуклые множества точек
- •5.2 Геометрический метод решения задач линейного программирования
- •5.2.1 Свойства задачи линейного программирования
- •5.2.2Геометрическое изображение системы ограничений.
- •5.3 Симплексный метод
- •5.3.1 Геометрическая интерпретация симплексного метода
- •5.3.2 Аналитические методы поиска оптимального решения
- •5.3.3. Симплексные таблицы
- •5.3.4 Метод искусственного базиса
- •5.4 Двойственные задачи
- •5.4.1 Экономическая интерпретация двойственной задачи
- •5.4.2 Взаимно двойственные задачи линейного программирования и их свойства
- •5.4.3 Первая теорема двойственности
- •5.4.4 Вторая теорема двойственности
- •5.5 Транспортная задача.
- •5.5.1. Экономико-математическая модель транспортной задачи.
- •5.5.2 Нахождение первоначального базисного распределения поставок
- •5.5.3. Поиск оптимального решения методом потенциалов.
- •5.6. Открытая модель транспортной задачи.
- •Вопросы и задачи:
- •6. Управление запасами
- •6.1 Модели управления запасами в экономике
- •6.2 Управление запасами при случайном спросе и задержке в поставках
- •Вопросы и задачи.
- •Заключение
- •Библиографический список
5.2 Геометрический метод решения задач линейного программирования
5.2.1 Свойства задачи линейного программирования
Выше были рассмотрены различные формы задачи линейного программирования и показано, что любая задача линейного программирования может быть представлена в виде общей, канонической или стандартной задачи.
В данном разделе будем рассматривать каноническую задачу, в которой система ограничений есть система уравнений.
Для обоснования свойств задачи линейного программирования и методов её решения целесообразно рассмотреть ещё два вида записи канонической задачи.
Матричная форма записи:
при ограничениях
AX = B,
X 0,
где
Здесь С – матрица-строка, А – матрица системы, Х – матрица-столбец переменных, В – матрица-столбец свободных членов.
Векторная форма записи:
при ограничениях
где СХ – скалярное произведение векторов С = (с1, с2, …, сn) и Х = (х1, х2, …, хn); векторы
Векторы состоят соответственно из коэффициентов при переменных и свободных членов.
Векторное неравенство X 0 означает, что все компоненты вектора Х неотрицательны, т.е. xj 0, j = 1, 2, …, n.
В задачах линейного программирования представляют интерес системы, в которых ранг г матрицы системы А=(аij), i = 1,2, ..., m; j = 1,2, ..., n, или, что то же самое, максимальное число независимых уравнений системы г меньше числа переменных, т.е. r < n.
Любые m переменных системы m линейных уравнений с n переменными (m < n) называются основными (или базисными), если определитель матрицы коэффициентов при них отличен от нуля. Тогда остальные п - m переменных называются неосновными.
Базисным решением системы m линейных уравнений с n переменными называется решение, в котором все n – m неосновных переменных равны нулю.
В задачах линейного программирования особый интерес представляют допустимые базисные решения, или, как их еще называют, опорные планы.
Сформулируем ряд теорем.
Теорема 2.1. Множество всех допустимых решений системы ограничений задачи линейного программирования является выпуклым, а точнее, представляет выпуклый многогранник или выпуклую многогранную область, которые в дальнейшем будем называть одним термином -многогранником решений.
Ответ на вопрос, в какой точке многогранника решений возможно оптимальное решение задачи линейного программирования, дается в следующей фундаментальной теореме.
Теорема 2.2. Если задача линейного программирования имеет оптимальное решение, то линейная функция принимает максимальное значение в одной из угловых точек многогранника решений. Если линейная функция принимает максимальное значение более чем в одной угловой точке, то она принимает его в любой точке, являющейся выпуклой линейной комбинацией этих точек.
Будем полагать, что многогранник решений является ограниченным.
Требование ограниченности многогранника решений в теореме является существенным, так как в случае неограниченной многогранной области не каждую точку такой области можно представить выпуклой линейной комбинацией ее угловых точек.
Данная теорема является фундаментальной, так как она указывает принципиальный путь решения задач линейного программирования. Действительно, согласно этой теореме вместо исследования бесконечного множества допустимых решений для нахождения среди них искомого оптимального решения необходимо исследовать лишь конечное число угловых точек многогранника решений.
Следующая теорема посвящена аналитическому методу нахождения угловых точек.
Теорема 2.3. Каждому допустимому базисному решению задачи линейного программирования соответствует угловая точка многогранника решений и, наоборот, каждой угловой точке многогранника решений соответствует допустимое базисное решение.
Из теорем 2.2 и 2.3 непосредственно вытекает важное следствие:
если задача линейного программирования имеет оптимальное решение, то оно совпадает, по крайней мере, с одним из ее допустимых базисных решений.
Итак, оптимум линейной функции задачи линейного программирования следует искать среди конечного числа ее допустимых базисных решений.