
- •По дисциплине «электрические машины».
- •Введение
- •Тема1.1. Основные сведения, определения и классификация электрических машин. Электрические машины — электромеханические преобразователи энергии
- •Классификация электрических машин
- •Раздел 1. Электрические машины постоянного тока. Тема 1.2. Устройство, принцип работы электрической машины постоянного тока.
- •Принцип действия генератора и электродвигателя. Обратимость эл. Машин.
- •Тема 1.3. Обмотки якорей машин постоянного тока
- •Простая петлевая обмотка якоря
- •Сложные петлевые обмотки
- •Простая волновая обмотка якоря
- •Сложная волновая обмотка
- •Комбинированные обмотки
- •Тема 1.4. Электромагнитная мощность и электромагнитный момент мпт. Результирующая эдс,
- •Электромагнитный момент.
- •Электромагнитная мощность машины постоянного тока
- •Тема 1.5. Магнитная цепь машины постоянного тока.
- •Тема 1.6. Реакция якоря
- •Тема 1.7. Коммутация обмотки якоря машин постоянного тока.
- •Тема 1.8. Генераторы постоянного тока. Генератор независимого возбуждения
- •Генератор параллельного возбуждения
- •Генератор последовательного возбуждения.
- •Генератор смешанного возбуждения
- •Тема 1.9. Двигатели постоянного тока. Двигатели параллельного возбуждения.
- •Двигатели последовательного и смешанного возбуждения
- •Пуск, реверс и регулирование частоты вращения электродвигателя постоянного тока.
- •Потери и кпд машин постоянного тока.
- •Бесконтактный двигатель постоянного тока
- •Раздел 2. Трансформаторы.
- •Тема 2.1. Однофазные трансформаторы. Устройство трансформаторов.
- •Типы судовых трансформаторов.
- •Принцип действия.
- •Режимы работы трансформатора.
- •Потери в тр-ре. Кпд.
- •Тема 2.2. Трехфазный трансформатор.
- •Параллельная работа трансформаторов
- •Тема 2.3. Специальные трансформаторы.
- •Сварочные трансформаторы
- •Автотрансформаторы.
- •Стабилизатор напряжения
- •Трансформаторы напряжения
- •Трансформаторы тока
- •Раздел 3. Синхронные машины Тема 3.1. Общие положения. Устройство.
- •Тема 3.2. Классификация синхронных генераторов.
- •Тема 3.3. Реакция якоря синхронного генератора
- •Характеристики одиночно работающего сг.
- •Тема 3.4. Параллельная работа синхронных генераторов
- •Тема 3.5. Синхронный электродвигатель
- •Раздел 4. Асинхронные электрические машины Тема 4.1. Устройство, принцип работы, режимы работы
- •Принцип действия.
- •Скольжение ротора. Влияние скольжения на параметры машины.
- •Холостой ход и рабочий режим асинхронного двигателя.
- •Тема 4.2. Электромагнитный момент и механические характеристики ад
- •Механические характеристики асинхронного двигателя при изменениях напряжения сети и активного сопротивления обмотки ротора
- •Рабочие характеристики асинхронного двигателя
- •Тема 4.3. Пуск в ход и регулирование скорости вращения ад. Способы пуска в ход асинхронного двигателя.
- •Регулирование угловой скорости трехфазных асинхронных эл. Двигателей.
- •Изменение сопротивления цепи ротора.
- •Изменение частоты тока.
- •Изменение числа пар полюсов статора.
- •Тормозные режимы
- •Рекуперативное торможение.
- •Торможение противовключением
- •Динамическое торможение.
- •Тема 4.4. Специальные типы ад Однофазные и конденсаторные асинхронные двигатели Принцип действия и пуск однофазного асинхронного двигателя
- •Асинхронные конденсаторные двигатели
- •Работа трехфазного асинхронного двигателя от однофазной сети
- •Однофазный двигатель с экранированными полюсами
Раздел 4. Асинхронные электрические машины Тема 4.1. Устройство, принцип работы, режимы работы
Асинхронный двигатель состоит из двух основных частей, разделенных воздушным зазором: неподвижного статора и вращающегося ротора. Каждая из этих частей имеет сердечник и обмотку. При этом обмотка статора включается в сеть и является как бы первичной, а обмотка ротора – вторичной, так как энергия в нее поступает из обмотки статора за счет магнитной связи между этими обмотками.
По своей конструкции асинхронные двигатели разделяются на два вида: двигатели с короткозамкнутым ротором и двигатели с фазным ротором. Рассмотрим устройство трехфазного асинхронного двигателя с короткозамкнутым ротором (рис. 4.1.). Двигатели этого вида имеют наиболее широкое применение.
Неподвижная часть двигателя — статор — состоит из корпуса 11 и сердечника 10 с трехфазной обмоткой. Корпус двигателя отливают из алюминиевого сплава или из чугуна либо делают сварным. Рассматриваемый двигатель имеет закрытое обдуваемое исполнение. Поэтому поверхность его корпуса имеет ряд продольных ребер, назначение которых состоит в том, чтобы увеличить поверхность охлаждения двигателя.
В корпусе расположен сердечник статора 10, имеющий шихтованную конструкцию: отштампованные листы из тонколистовой электротехнической стали толщиной обычно 0,5 мм покрыты слоем изоляционного лака, собраны в пакет и скреплены специальными скобами или продольными сварными швами по наружной поверхности пакета. Такая конструкция сердечника способствует значительному уменьшению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. На внутренней поверхности сердечника статора имеются продольные пазы, в которых расположены пазовые части обмотки статора, (см. рис 4.1), соединенные в определенном порядке лобовыми частями, находящимися за пределами сердечника по его торцовым сторонам.
Рис. 4.1. Устройство трехфазного асинхронного двигателя с короткозамкнутым ротором:
1 — вал; 2,6 — подшипники; 3, 7 — подшипниковые щиты; 4 — коробка выводов; 5 — вентилятор; 8 — кожух вентилятора; 9 — сердечник ротора с короткозамкнутой обмоткой; 10 — сердечник статора с обмоткой; 11 — корпус; 12 — лапы
В расточке статора расположена вращающаяся часть двигателя — ротор, состоящий из вала 1 и сердечника 9 с короткозамкнутой обмоткой. Такая обмотка, называемая «беличье колесо», представляет собой ряд металлических (алюминиевых или медных) стержней, расположенных в пазах сердечника ротора, замкнутых с двух сторон короткозамыкающими кольцами (рис.4.2, а)
Рис.4.2. Короткозамкнутый ротор:
а — обмотка «беличья клетка», б — ротор с обмоткой, выполненной методом литья под давлением; 1 — вал; 2 — короткозамыкающие кольца; 3 — вентиляционные лопатки
Сердечник ротора также имеет шихтованную конструкцию, но листы ротора не покрыты изоляционным лаком, а имеют на своей поверхности тонкую пленку окисла. Это является достаточной изоляцией, ограничивающей вихревые токи, так как величина их невелика из-за малой частоты перемагничивания сердечника ротора. Например, при частоте сети 50 Гц и номинальном скольжении 6% частота перемагничивания сердечника ротора составляет 3 Гц.
Короткозамкнутая обмотка ротора в большинстве двигателей выполняется заливкой собранного сердечника расплавленным алюминиевым сплавом. При этом одновременно cо стержнями обмотки отливаются короткозамыкающие кольца и вентиляционные лопатки (рис.4.2,б). Вал ротора вращается в подшипниках качения 2 и 6, расположенных в подшипниковых щитах 3 и 7.
Охлаждение двигателя осуществляется методом обдува наружной оребренной поверхности корпуса. Поток воздуха создается центробежным вентилятором 5, прикрытым кожухом 8. На торцовой поверхности этого кожуха имеются отверстия для забора воздуха. Двигатели мощностью 15 кВт и более помимо закрытого делают еще и защищенного исполнения с внутренней самовентиляцией. В подшипниковых щитах этих двигателей имеются отверстия (жалюзи), через которые воздух посредством вентилятора прогоняется через внутреннюю полость двигателя. При этом воздух «омывает» нагретые части (обмотки, сердечники) двигателя и охлаждение получается более эффективным, чем при наружном обдуве.
Концы обмоток фаз выводят на зажимы коробки выводов 4. Обычно асинхронные двигатели предназначены для включения в трехфазную сеть на два разных напряжения, отличающиеся в √3 раз. Например, двигатель рассчитан для включения в сеть на напряжения 380/660 В. Если в сети линейное напряжение 660 В, то обмотку статора следует соединить звездой, а если 380 В, то треугольником. В обоих случаях напряжение на обмотке каждой фазы будет 380 В.
Обмотку статора можно соединить звездой или треугольником. Это дает возможность применять одни и те же двигатели при питании от сети с двумя напряжениями (127-220; 220-380; 380-660) в. Например, если обмотка двигателя выполнена на 220 в. то, соединив провода звездой на можно включить двигатель на 380 в.
Выводы обмоток фаз располагают на панели таким образом, чтобы соединения обмоток фаз было удобно выполнять посредством перемычек, без перекрещивания последних. В некоторых двигателях небольшой мощности в коробке выводов имеется лишь три зажима. В этом случае двигатель может быть включен в сеть на одно напряжение (соединение обмотки статора такого двигателя звездой или треугольником выполнено внутри двигателя).
Монтаж двигателя в месте его установки осуществляется либо посредством лап 12, либо посредством фланца. В последнем случае на подшипниковом щите (обычно со стороны выступающего конца вала) делают фланец с отверстиями для крепления двигателя на рабочей машине. Для предохранения обслуживающего персонала от возможного поражения электрическим током двигатели снабжаются болтами заземления (не менее двух).
Принципиальная схема включения в трехфазную сеть асинхронного двигателя с короткозамкнутым ротором показана на рис.4.3, а.
Рис.4.3. Принципиальные схемы включения трехфазных асинхронных двигателей с короткозамкнутым (а) и фазным (б) ротором.
Другая разновидность трехфазных асинхронных двигателей – двигатели с фазным ротором – конструктивно отличается от рассмотренного двигателя главным образом устройством ротора. Асинхронные двигатели с фазным ротором имеют более сложную конструкцию и менее надежны, но они обладают лучшими регулировочными и пусковыми свойствами, чем двигатели с короткозамкнутым ротором. Принципиальная схема включения в трехфазную сеть асинхронного двигателя с фазным ротором показана на рис.4.3, б. Обмотка ротора этого двигателя соединена с пусковым реостатом ПР, создающим в цепи ротора добавочное сопротивление Rдоб.
На корпусе асинхронного двигателя прикреплена табличка, на которой указаны тип двигателя, завод-изготовитель, год выпуска и номинальные данные (полезная мощность, напряжение, ток, коэффициент мощности, частота вращения и КПД).