- •8.6. Окислительный стресс
- •8.6.1. Повреждения биомолекул активными формами кислорода
- •8.6.1.1. Повреждения липидов
- •8.6.1.2. Повреждения нуклеиновых кислот
- •8.6.1.3. Повреждения белков
- •8.6.2. Детоксикация продуктов окислительной модификации биомолекул
- •8.6.3. Атмосферный озон вызывает окислительный стресс в растениях
8.6.1.2. Повреждения нуклеиновых кислот
АФК вызывают окислительную модификацию нуклеотидов и нуклеиновых кислот, особенно ДНК. Наиболее заметное действие оказывает НО , который модифицирует все четыре основания в молекуле ДНК, образуя множество производных форм. 1О2 избирательно атакует гуанин, а О и Н2О2 не реагируют с основаниями ДНК вообще. Под действием АФК нуклеотиды подвергаются перекисному окислению. Так, из тимина образуется 5-СН2ООН-урацил:
Дальнейшее превращение образовавшихся перекисей приводит к гидропроизводным типа ROH или R(OH)2, главным из которых является 8-гидроксигуанин:
Эта окислительная модификация гуанина приводит к нарушениям ферментативного процесса метилирования цитозиновых оснований, которые соседствуют с модифицированными гуанозиновыми основаниями. Модификации оснований, вызванные АФК, становятся причиной разрывов цепей ДНК и повреждений хромосом. АФК являются мощными мутагенными агентами, ингибиторами синтеза ДНК и деления клеток.
8.6.1.3. Повреждения белков
Белки, так же как липиды и нуклеиновые кислоты, повреждаются активными формами кислорода. При действии АФК происходит окисление аминокислот с образованием пероксильных радикалов:
Из пероксильных радикалов образуются гидропероксиды и алкоксильные радикалы. Последние обладают высокой реакционной способностью и сами могут индуцировать образование высокореактивных соединений радикальной природы. Гидропероксиды также генерируют новые радикалы, если имеются ионы металлов переменной валентности. Производными пероксидных групп (—С—О—ОН) являются группы —СОН (о- и м-тирозины), —С(ОН)2, карбонилы и другие соединения. Образуются также димеры (дитирозины) и происходит окислительное гликозилирование белков. АФК-индуцированные окислительные модификации аминокислот приводят к нарушению третичной структуры белков, к их денатурации и аггрегации с сопутствующей потерей функциональной активности.
8.6.2. Детоксикация продуктов окислительной модификации биомолекул
Наряду с ферментами, осуществляющими ликвидацию АФК (супероксиддисмутазой, аскорбатпероксидазой, глютатионредуктазой и др.) — (см. гл. 4), большое значение в устойчивости растений к окислительному стрессу имеют ферменты, включенные в детоксикацию продуктов взаимодействия АФК с биомолекулами, т. е. продуктов окислительной деградации липидов, белков и нуклеиновых кислот. К таким ферментам относятся глиоксалаза I (Гл I) и глиоксалаза II (Гл II), образующие глиоксалазную систему. Кофактором реакций, осуществляемых глиоксалазами, является восстановленный глютатион (Г-SH). Глиоксалазная система осуществляет превращение многих кетоальдегидов в органические кислоты по следующей схеме:
Важная роль в детоксикации продуктов окислительной модификации биомолекул принадлежит также глютатион-S-трансферазам (ГST). Эти ферменты осуществляют превращение самых разнообразных химических соединений, имеющих электрофильную природу, т.е. способных принимать электрон от нуклеофильного донора. Функцию нуклеофильного донора электронов в реакциях, катализируемых TST, выполняет атом серы восстановленного глутатиона. В
ГST-реакции электрофильные продукты окислительной модификации биополимеров (R—X) взаимодействуют с восстановленным глутатионом, формируя конъюгат:
Здесь X означает химическую группу, которая, восстанавливаясь в ходе ферментативной реакции, отделяется от молекулы токсичного вещества (как это показано на схеме) или остается в его составе. И в том и в другом случае продукты ферментативной реакции подвергаются дальнейшим превращениям с участием других ферментов, образуя в конце концов нетоксичное соединение. Следует отметить важную роль FST в детоксикации не только продуктов окислительной модификации биомолекул, но и ксенобиотиков.
