
- •Общество с ограниченной ответственностью “Надымгазпром” филиал ооо «надымгазпром»
- •Сборник лекций
- •Тема 1. Введение.
- •1.1 Квалификационная характеристика оператора по исследованию скважин 5-го разряда. Профессия – Оператор по исследованию скважин.
- •1.2 Квалификационная характеристика оператора по исследованию скважин 4-го разряда. Профессия – Оператор по исследованию скважин.
- •1.3 Тематический план и программа для повышения квалификации операторов по исследованию скважин 4-5 разряда. Предмет «Специальная технология». Тематический план.
- •Программа.
- •Тема 1. Введение.
- •Тема 2. Основы разработки газовых, газоконденсатных и нефтяных месторождений.
- •Тема 3. Способы эксплуатации скважин и методы увеличения их производительности.
- •Тема 4. Сбор и подготовка газа, газового конденсата и нефти на промыслах.
- •Тема 5. Задачи и методы исследования продуктивных пластов и скважин.
- •Тема 6. Исследование скважин методом установившихся отборов.
- •Тема 7. Исследование скважин методом восстановления давления.
- •Тема 8. Исследование газоконденсатных скважин на газоконденсатность.
- •Тема 9. Гидропрослушивание скважин и экспресс-методы исследования.
- •Тема 10. Построение карт изобар и их использование для определения гидродинамических характеристик пластов.
- •Тема 11. Скважинные глубинные приборы – манометры, термометры, комплексные приборы.
- •Тема 12. Оборудование и аппаратура, применяемые при исследовании скважин с помощью глубинных приборов.
- •Тема 13. Специальные виды работ при исследовании скважин.
- •Тема 14. Промыслово-геофизические методы исследования газовых скважин.
- •Тема 15. Исследования пьезометрических и контрольно-наблюдательных скважин.
- •Тема 2. Основы разработки газовых, газоконденсатных и нефтяных месторождений.
- •2.1. Характеристика, физические и химические свойства природных
- •2.1.1. Состав и основные параметры компонентов природных газов.
- •2.1.2. Нефть и газоконденсат, состав и физические свойства.
- •2.2 Условия залегания нефти, газа и воды в пластах.
- •2.3. Давление и температура в пласте. Геотермический градиент.
- •2.4. Понятие об источниках пластовой энергии и режимах
- •Для газоносных пластов основными источниками пластовой энергии являются:
- •2.5. Нефтеотдача и газоотдача пластов.
- •2.6. Понятие о системах разработки залежей углеводородного сырья.
- •Тема 3. Способы эксплуатации скважин и методы увеличения их производительности.
- •3.1. Назначение скважин. Бурение, вскрытие пласта и освоение
- •3.2. Конструкция скважины. Забойное оборудование скважин.
- •Наземное (устьевое) оборудование скважин. Фонтанная арматура.
- •3.4. Понятие о производительности скважины. Понятие о коэффициенте несовершенства скважин.
- •3.5. Методы увеличения производительности скважин.
- •3.6. Современные способы добычи нефти, газа и газового конденсата.
- •3.7. Способы эксплуатации газовых скважин. Гидраты и борьба с ними.
- •3.8. Технологические режимы эксплуатации газовых и газоконденсатных скважин.
- •3.9. Понятие о подземном ремонте.Текущий и капитальный
- •Тема 4. Сбор и подготовка газа, газового конденсата и нефти
- •4.1. Требования к промысловой подготовке
- •4.2. Сбор и подготовка природного газа и газоконденсата
- •4.3. Сбор и подготовка нефти.
- •Тема 5. Задачи и методы исследования продуктивных пластов и скважин.
- •5.1 Цель проведения исследований продуктивных пластов
- •5.2 Назначение и периодичность проведения газогидродинамических
- •5.3. Классификация и методы газогидродинамических исследований
- •Тема 6. Исследования скважин методом установившихся отборов.
- •6.1. Подготовка скважин к производству исследований.
- •6.2. Расчет пластового давления по данным устьевых давлений.
- •6.3. Проведение исследований методом установившихся отборов газа
- •Изохроный метод.
- •Ускоренно- изохронный метод.
- •Экспресс–метод.
- •Метод монотонно ступенчатого увеличения дебита.
- •6.4. Оборудование применяемое при исследовании скважин
- •Установки для исследования скважин «Надым-1» , «Надым-2».
- •6.5. Понятие о погрешности измерения и погрешности приборов.
- •Полевая рабочая станция mPc
- •Тема 7. Исследования скважин методом восстановления давления.
- •6.1 Метод снятия кривой восстановления давления.
- •6.2 Методы обработки кривой квд.
- •6.3 Влияние различных факторов на форму квд.
- •6.4 Учет влияния различных факторов при обработке квд.
- •6.5 Характер и обработка квд в неоднородных пластах.
- •6.6 Обработка кривых стабилизации забойного давления (ксд).
- •Тема 8. Исследования газоконденсатных скважин на газо-
- •8.1 Методы промысловых исследований скважин на газо-
- •8.5. Классификация газоконденсатных скважин. Минимально допустимый дебит (мдд). Депрессия на пласт при газоконденсатных исследованиях. Требования к сепарационному оборудованию.
- •8.3 Требования к скважине при исследовании на газоконденсатность.
- •8.4. Технология проведения исследования скважин на газоконденсатность при одноступенчатой сепарации газа.
- •8.5. Замер конденсатогазового фактора (кгф). Отбор проб газа и конденсата.
- •8.6. Отбор проб газа сепарации и конденсата.
- •Отбор проб производится на каждом режиме исследования.
- •Схемы отбора проб конденсата и отсепарированного газа.
- •8.5. Лабораторные исследования газоконденсатных систем, исследования проб газа и конденсата.
- •Тема 9. Гидропрослушивание скважин и новые экспресc – методы исследования.
- •9.1 Гидропрослушивание скважин.
- •9.2 Метод исследования скважин с применением функции влияния.
- •Методика работ.
- •Тема 10. Построение карт изобар и их использование для определения гидродинамических характеристик пластов.
- •10.1. Методы определения пластовых давлений.
- •10.2. Расчет пластовых давлений в газовых скважинах.
- •10.3. Методика построения карт изобар.
- •10.4. Определение гидропроводности пластов по карте изобар.
- •Тема 11. Скважинные глубинные приборы – манометры, термометры, комплексные приборы. Основные задачи промысловых измерений состоят в определении или регистрации параметров работы скважин:
- •Тема 12. Оборудование и аппаратура применяемые при исследовании скважин глубинными приборами.
- •Тема 13. Специальные виды работ при исследовании скважин
- •13.1 Промыслово-геологические исследования с целью выявления причин возникновения межколонных давлений.
- •13.2.Отбор глубинных проб.
- •13.3 Отбор проб жидкости на устье скважины каплеотделителями.
- •13.4 Групповые замерные установки типа ''Спутник''
6.4. Оборудование применяемое при исследовании скважин
на стационарных режимах фильтрации.
Оборудование, применяемое при исследовании скважин методом установившихся отборов можно разделить на два типа:
Глубинные приборы и комплексы, предназначенные для замера параметров работы скважины непосредственно на забое и по стволу скважины.
Устьевое исследовательское оборудование.
Перечислим наиболее часто применяемое устьевое оборудование:
Шайбный измеритель расхода газа.
Диафрагменный измеритель критического течения газа.
Дифманометры- расходомеры (поплавковые, мембранные, сильфонные), (УСФ-100).
Установки для исследований скважин «Надым-1», «Надым-2».
Устройство «Режим ПНА-1».
Низкотемпературные сепарационные установки (передвижные), наиболее часто применяемые при исследовании газаконденсатных и газонефтяных скважин (трапы).
Средства КИПиА: образцовые манометры, ртутные термометры, датчики давления и температуры частотного и аналогового типа с регистрирующей аппаратурой, акустические датчики механических примесей и т. д.
Шайбный измеритель расхода газа.
Предназначен для измерения расхода газа (до 5 тыс. м3/сут). Данный прибор применяется для замера дебита газа в трубном и затрубном пространстве нефтяных скважин эксплуатируемых глубинно-насосным способом.
Представляет собой упрощенный ДИКТ и дифференциальный жидкостной U-образный манометр, подсоединяемый в корпусе ДИКТа на расстоянии 3-5 см от шайбы.
Суточный дебит газа рассчитывается по формуле:
Q = 0,172 dш2(h/г) 0,5 (293/Тг) 0,5, (6.13)
где
dш- диаметр шайбы, мм;
г -относительный удельный вес газа;
h -перепад давления в мм;
Тг –температура газа, К.
Диафрагменный измеритель критического течения газа (ДИКТ).
Виды: ДИКТ-100, ДИКТ-50.
Используются при исследовании скважин с выпуском газа в атмосферу. При измерении дебита с помощью ДИКТа должно быть обеспечено условие критического течения газа через диафрагму т.е. давление до диафрагмы должно быть в два и более раз выше, чем после нее.
Дебит газа определяется по формуле:
Q = С Рд г z Тд ) 0,5 , (6.14)
где
Q - дебит газа, тыс.м3/сут.;
С - коэффициент, определяемый по таблице и зависящий от диаметра диафрагмы;
Рд - абсолютное давление перед диафрагмой, кгс/см2;
поправочный коэффициент для учета изменения показателя адиабаты реального газа;
г -относительная плотность газа по воздуху;
Тд-абсолютная температура газа перед диафрагмой, К;
z- коэффициент сверхсжимаемости.
Дифманометры-расходомеры.
Расходомеры данного типа состоят из двух основных узлов:
Устройство, в котором монтируется диафрагма, сопло, штуцер (иное калиброванное отверстие )
Дифференциального манометра, с помощью которого измеряется перепад давления на диафрагме.
Дебит газа рассчитывается по формуле:
Q = 1700k tk1 dш2 (Р1 h / г Т z) 0,5 , (6.15)
где
Q - дебит, м3/сут;
коэффициент расхода газа, определяемый в зависимости от отношения dш/D;
D - диаметр трубопровода;
поправочный коэффициент на расширение струи газа, определяемый по графикам в инструкции;
kt – коэффициент, зависящий от материала и температуры;
k1 – суммарная поправка на недостаточную остроту входной кромки диафрагмы и шероховатость трубопровода, определяется по табл. инструкции;
dш- диаметр диафрагмы;
Р1- абсолютное давление перед диафрагмой, кгс/см2;
h - перепад давления до и после диафрагмы в мм рт. ст.;
г -относительная плотность газа по воздуху;
Т - абсолютная температура газа перед диафрагмой, К;
Z - коэффициент сверхсжимаемости газа при Р и Т.