Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Цели и задачи курса (Автосохраненный).docx
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
13.04 Mб
Скачать

Вихревые насосы

Вихревой насос (рис. 6.21) состоит из рабочего колеса 1 с короткими радиальными лопатками и неподвижного корпуса 2, снабженного всасывающим 3 и напорным 4 патрубками. В корпусе имеется концентрический отводной канал, который прерывается перемычкой, служащей уплотнением между напорной и всасывающей лопастями. В вихревом насосе не обеспечивается герметичное разделение всасывающего и напорного трубопроводов, т.е. насос является проточным так же, как и все лопастные насосы.

В вихревых насосах центробежная сила используется несколько раз. Поэтому напор, создаваемый ими, в 4–5 раз превышает напор центробежных машин, имеющих ту же окружную скорость.

Центробежные силы вызывают непрерывное истечение жидкости из межлопастных каналов в концентрический отводной канал. Ввиду неразрывности потока жидкость непрерывно втекает в межлопастные каналы из отводного канала. За время прохождения всей длины отводного канала жидкость несколько раз попадает в каналы между лопатками и каждый раз получает от рабочего колеса новый импульс. При этом жидкость совершает сложное извилистое винтообразное движение.

Рис. 6.21. Схема вихревого насоса

В вихревых насосах определяется внутренний КПД рабочего процесса . Значение вычисляют как отношение полезной теоретической мощности к теоретической мощности, затрачиваемой колесом. Кроме внутренних потерь, свойственных процессу передачи энергии от рабочего колеса к потоку и оцениваемых внутренним КПД , в вихревых насосах наблюдаются объемные, гидравлические и механические потери. Объемные потери обусловлены перетеканием жидкости через перемычки.

Гидравлические потери энергии возникают вследствие трения и вихреобразования при поступательном движении жидкости по отводному каналу. Механические потери – потери энергии на трение в сальниках, подшипниках и на трение на рабочих поверхностях колеса в жидкости.

Столь значительные потери энергии приводят к тому, что при наиболее благоприятных для вихревых насосов режимах общий КПД машины не превышает 50 .

На рис. 6.22 представлены характеристики вихревого насоса. Напор насоса H зависит от расхода в меньшей степени, чем для центробежного насоса. Если окружная составляющая скорости жидкости в отводном канале равна окружной скорости рабочего колеса, то жидкость в колесе и канале вращается как одно целое с одинаковой окружной скоростью.

Рис. 6.22. Характеристики вихревого насоса

Сильное взаимодействие потока жидкости в колесе и в канале отсутствует, продольные вихри не возникают, и напор вихревого рабочего процесса , при этом .

Для этого случая можно записать:

(6.48)

где S – площадь сечения отводного канала, u – окружная скорость колеса на радиусе центра тяжести сечения S.

Чем меньше подача, тем больше разница окружных составляющий скоростей жидкости в колесе и в канале, тем больше силы, вызывающие продольный вихрь и тем выше напор. С увеличением подачи разница между и уменьшается, силовое взаимодействие потоков понижается, как и потребляемая мощность насоса.

Действительный напор вихревого насоса может быть определен по формуле (6.27):

Здесь – коэффициент напора, u – окружная скорость колеса на радиусе центра тяжести сечения канала. Коэффициент напора может меняться в пределах .

Подачу насоса определяют по формуле:

(6.49)

Коэффициент подачи c меняется в пределах c = 0,50–0,65.

По сравнению с центробежным, вихревой насос компактнее, конструкция его проще и дешевле. Вихревые насосы являются самовсасывающими. Они могут работать на смеси газа и жидкости. В вихревом насосе изменение напора меньше влияет на подачу, чем в центробежном, о чем свидетельствует крутая характеристика (рис. 6.22).

Вихревые насосы обычно применяют при необходимости создавать большой напор при малой подаче.

В вихревых насосах жидкость подводится к рабочему колесу на периферии его, т.е. в зоне высоких скоростей. Поэтому возможность возникновения кавитации весьма велика. Предупредить возникновение кавитации можно повышением давления на входе в вихревое колесо. Для этого следует установить на валу вихревого насоса дополнительное центробежное колесо. Применение предвключенного центробежного колеса позволяет существенно повысить скорость жидкости на входе в вихревое колесо и получить более высокое давление вихревого колеса и насоса в целом. КПД центробежно-вихревого насоса выше, чем чисто вихревого насоса. Если у наиболее распространенных вихревых насосов КПД составляет 33–35 , то для центробежно-вихревых – 50–65 .

Регулирование производительности вихревых насосов производится дросселированием потока на выходе или изменением числа оборотов.