
- •Понятия «химический процесс», «химический реактор». Требования, предъявляемые к химическим реакторам.
- •Технологические критерии оценки эффективности протекания процесса в химическом реакторе: степень превращения реагента, выход продукта, связь между ними.
- •Уровень химического процесса и уровень химического реактора в иерархической структуре химического производства.
- •Химический процесс на молекулярном и макроуровне, учёт взаимного влияния химической реакции и процессов переноса импульса, массы и теплоты. Кинетическая и диффузионная области процесса.
- •Общая характеристика гомогенных процессов. Аппаратурное оформление гомогенных некаталитических процессов.
- •Гомогенные некаталитические процессы: термодинамические закономерности влияния температуры на степень превращения реагента (выход продукта).
- •Гомогенные некаталитические процессы: термодинамические закономерности влияния давления на степень превращения реагента (выход продукта).
- •Гомогенные некаталитические процессы: термодинамические закономерности влияния концентраций реагентов, продуктов и инертных примесей на равновесие реакций.
- •Кинетические закономерности гетерогенных некаталитических процессов. Пути интенсификации гетерогенных процессов.
- •Гетерогенные некаталитические процессы в системе «газ-твердое тело»: модель с фронтальным перемещением зоны реакции, ее характеристика.
- •Гетерогенные некаталитические процессы в системе «газ-твердое тело»: вывод уравнения скорости процесса, его анализ.
- •Гетерогенные некаталитические процессы «газ-твердое тело»: закономерности, области протекания, пути интенсификации, их теоретическое обоснование.
- •Гетерогенные некаталитические процессы в системе «газ-твердое тело»: лимитирующая стадия, способы ее определения.
- •Аппаратурное оформление гетерогенных некаталитических процессов в системе «газ - твердое тело».
- •Аппаратурное оформление гетерогенных некаталитических процессов в системе «жидкость - твердое тело».
- •Гетерогенные некаталитические процессы в системе «газ-жидкость»: пленочная модель, ее характеристика.
- •Гетерогенные некаталитические процессы «газ-жидкость»: кинетические закономерности, теоретическое обоснование путей интенсификации.
- •Аппаратурное оформление гетерогенных некаталитических процессов в системе «газ-жидкость».
- •Аппаратурное оформление гетерогенных некаталитических процессов в системе «жидкость - жидкость».
- •Промышленный катализ: сущность, механизм, назначение.
- •Виды катализа, классификация механизмов катализа.
- •Стадии гетерогенно-каталитического процесса на твердом катализаторе.
- •Технологические характеристики твердых катализаторов.
- •Отравление и регенерация катализаторов. Регенератор катализатора «крекинг-флюид» процесса.
- •Состав и способы изготовления контактных масс.
- •Аппаратурное оформление гетерогенных каталитических процессов.
- •Классификация химических реакторов.
- •Моделирование химических реакторов: понятие об элементарном объеме и элементарном промежутке времени, уравнение материального баланса химического реактора (в общем виде) и его анализ.
- •Общая характеристика идеальных моделей химических реакторов (допущения об идеальности, характер изменения параметров в зависимости от объема реактора и от времени).
- •Модель реактора идеального смешения периодического действия (рис-п), работающего в изотермическом режиме. Вывод характеристического уравнения.
- •Модель реактора идеального смешения непрерывного действия (рис-н), работающего в изотермическом режиме. Вывод характеристического уравнения.
- •Модель реактора идеального вытеснения (рив), работающего в изотермическом режиме. Вывод характеристического уравнения.
- •Модель каскада проточных реакторов идеального смешения (рис-к), работающего в изотермическом режиме.
- •Сравнение эффективности работы изотермических химических реакторов, описываемых различными моделями, по селективности протекания целевой реакции.
- •Сравнение эффективности работы изотермических химических реакторов, описываемых различными моделями, по выходу продукта.
- •Уравнение теплового баланса химического реактора в общем виде, его анализ. Тепловые режимы работы реакторов.
- •Модель реактора идеального смешения непрерывного действия (рис-н), работающего адиабатическом режиме.
- •Графическое решение модели реактора рис-н, работающего адиабатическом режиме, для необратимых эндо- и экзотермических реакций.
- •Графическое решение модели реактора рис-н, работающего адиабатическом режиме, для обратимых эндо- и экзотермических реакций.
- •Реализация оптимальных температурных режимов в каскаде рив при проведении обратимых экзотермических реакций.
- •Реализация оптимального температурного режима в каскадах рис, рив при проведении обратимых эндотермических реакций.
- •Реализация оптимального температурного режима в каскадах рис, рив при проведении эндотермических реакций.
- •Сопоставление конструкции аксиальных и радиальных реакторов установок каталитического риформинга.
- •Устройство аксиальных реакторов гидрогенизационных процессов.
- •Устройство реакторов «крекинг-флюид» процесса.
- •Устройство реакторов производства алкилата.
- •Устройство реакторов коксования нефтяных остатков.
Сравнение эффективности работы изотермических химических реакторов, описываемых различными моделями, по выходу продукта.
Уравнение теплового баланса химического реактора в общем виде, его анализ. Тепловые режимы работы реакторов.
В уравнении теплового баланса учитываются все тепловые потоки, входящие в реактор и выходящие из него. Такими потоками являются: Qвых – физическая теплота реакционной смеси, входящей в элементарный объем, для которого составляется баланс (входной поток); Qвых – физическая теплота реакционной смеси, покидающей элементарный объем (выходной поток); Qxp – теплота химической реакции (знак теплового эффекта зависит от того, происходит ли выделение или поглощение теплоты в результате химической реакции); Qто – теплота, расходуемая на теплообмен с окружающей средой (в зависимости от соотношения температур в реакторе и окружающей среде или в теплообменном устройстве этот поток может быть также направлен и в объем и из него); Qфп – теплота фазовых превращений.
Для стационарного режима работы реактора алгебраическая сумма всех тепловых потоков равна нулю:
Qвх – Qвых ± Qхр ± Qто ± Qaп = 0. (6.1)
В нестационарном режиме происходит положительное или отрицательное накопление теплоты в элементарном объеме:
Qвх – Qвых ± Qхр ± Qто ± Qaп = Qнак. (6.2)
Уравнения (6.1) и (6.2) являются общими уравнениями теплового баланса химического реактора. Конкретный вид уравнения теплового баланса зависит от вида теплового режима и гидродинамической обстановки в реакторе. Различают несколько видов тепловых режимов химических реакторов. Рассмотрим различные тепловые режимы реакторов, в которых не происходит фазовых превращений.
В изотермическом режиме температура реакционной смеси, входящей в реактор, равна температуре в реакторе и температуре смеси, покидающей реактор. Это возможно, если выделение или поглощение теплоты в результате химической реакции полностью компенсируется теплообменом с окружающей средой. Для стационарного изотермического режима при постоянстве физических свойств системы можно записать:
Qвх = Qвых,
| Qхр |=| Qто |.
Адиабатический режим характеризуется полным отсутствием теплообмена с окружающей средой. В этом случае вся теплота химической реакции полностью расходуется на нагрев или охлаждение реакционной смеси. Для стационарного адиабатического режима
| Qвх | – | Qвых | = | Qхр |.
Промежуточный режим характеризуется тем, что частично теплота химической реакции расходуется на изменение теплосодержания (нагрев или охлаждение) реакционной смеси, частично – на теплообмен с окружающей средой. Этот режим наиболее часто встречается в реальных химических реакторах. Промежуточный тепловой режим описывается полным уравнением теплового баланса (6.1).
Для расчетов на основе этих моделей, как правило, достаточно лишь уравнения материального баланса. При расчете неизотермического реактора необходимо совместно решить систему уравнений материального и теплового балансов, из которых первое учитывает изменение количества вещества, а второе – изменение количества теплоты при протекании химического процесса.