
- •2. Перспективные направления развития трубопроводного транспорта.
- •3. Состав сооружений магистральных трубопроводов.
- •4. Выбор оптимальной трассы трубопровода.
- •5. Классификация нагрузок и воздействий на магистральный трубопровод.
- •2. Временные длительные:
- •6. Расчет трубопровода на прочность, деформации и устойчивость.
- •7. Очистка, испытание трубопроводов на прочность и проверка на герметичность.
- •8) Обеспечение устойчивости трубопроводов на подводных переходах, на болотистых и многолетнемерзлых грунтах
- •1. Горячие участки (температура всегда положительная);
- •9) Основные этапы внутритрубной диагностики трубопроводов
- •10. Переходы трубопроводов через водные преграды и классификация их по способу строительства.
- •11. Современные способы ремонта газонефтепроводов
- •12. Трубопроводы с переменной толщиной стенки.
- •14. Основное и вспомогательное оборудование нпс.
- •15. Характеристики основных и подпорныхнасосов нпс.
- •16. Совместная работа насосов и трубопроводной сети.
- •17. Расчёт внутриплощадочных трубопроводов.
- •18. Основное и вспомогательное оборудование кс
- •19. Технологические схемы кс. Технологическая схема кс с центробежными нагнетателями.
- •20. Подбор основного и вспомогательного оборудования кс. Подбор основного оборудования кс.
- •Подбор оборудования очистки газа.
- •21. Расчет внутриплощадочных трубопроводов кс.
- •22. Расчет режимов работы нпс и мн.
- •23. Способы увеличения пропускной способности нефтепровода.
- •24. Изменение подпоров перед станциями при изменении вязкости перекачиваемой нефти.
- •25. Нефтепроводы со сбросами и подкачками.
- •26. Режим работы нефтепровода при отключении насосных станций.
- •27.Способы регулирования работы насосных станций мн.
- •28. Состав объектов магистрального газопровода.
- •29. Температурный режим магистрального газопровода.
- •30. Технологический расчет газопроводов.
- •31. Увеличение производительности магистрального газопровода.
- •32. Режим работы газопровода при отключении кс или гпа.
- •33. Эксплуатация газопроводов с учетом скопления жидкости и образования гидратов.
- •34. Эксплуатация нефтепроводов при снижении производительности.
- •35. Эксплуатация мн с учетом отложения воды и парафинов.
- •36. Способы повышения эффективности работы магистральных газопроводов.
- •37. Техническое обслуживание оборудования кс и нс.
- •38. Диагностика технического состояния гпа
- •39.Технологический расчет магистральных нефтепроводов.
- •40. Уравнение баланса напоров. Определение числа нефтеперекачивающих станций.
- •41.Увеличение пропускной способности горячего нефтепровода.
- •42. Особые режимы работы «горячих» нефтепроводов.
- •43. Особенности технологии и преимущества последовательной перекачки нефтепродуктов.
- •44. Гидравлический расчет нефтепродуктопровода при последовательной перекачке.
- •45. Основные вопросы последовательной перекачки нефтепродуктов.
- •46. Прием и реализация смеси нефтепродуктов при последовательной перекачке нефтей и нефтепродуктов.
- •47. Мероприятия по уменьшению количества смеси при последовательной перекачке.
- •48. Режимы работы продуктопроводов при замещении нефтепродуктов.
- •49.Оптимальное число циклов при последовательной перекачке нефтепродуктов.
- •50. Способы перекачки высоковязких и высокозастывающих нефтей и нефтепродуктов.
- •51. Перекачка высоковязких ввн и высокозастывающих взн нефтей и н-продуктов с подогревом.
- •52.Тепловой расчет горячего нефтепровода.
- •53. Гидравлический расчет горячих нефтепроводов.
- •54. Характеристика q-h горячего нефтепровода
- •55. Системы сбора продукции нефтяных скважин.
- •В настоящее время известны следующие системы промыслового сбора продукции нефтяных скважин:
- •56. Системы сбора продукции газовых скважин.
- •57. Гидравлический расчёт промысловых нефтепроводов.
- •Число Рейнольдса для смеси определяется как
- •Кинематическая вязкость двухфазного потока определяется по формуле Манна:
- •Плотность газожидкостной смеси:
- •58. Дожимные насосные станции.
- •59. Технологические схемы установок подготовки газа.
- •60. Сепарация нефти и сепарация природного газа.
- •61. Оборудование установок подготовки нефти и газа к дальнему транспорту.
- •62. Особенности расчета нефтяных и газовых промысловых коллекторов.
- •63. Гидраты природных газов и методы борьбы с ними.
- •Методы борьбы с гидратообразованием.
- •64.Стабилизация нефти.
- •65. Подготовка газа и конденсата к транспорту.
- •66.Одоризация газа
- •67. Газораспределительные системы.
- •68. Технологические схемы и оборудование грс и грп.
- •69. Хранение природного газа.
- •70. Сжиженные углеводородные газы.
- •2. Удельный объем сжиженного газа (обратная величина плотности).
- •71. Хранение суг.
- •72. Технологические процессы и оборудование гнс.
- •73. Товарные нефтепродукты и основы их использования.
- •74. Насосные станции нефтебаз.
- •75. Назначение и категории нефтебаз.
- •76. Железнодорожные перевозки нефтепродуктов.
- •80.4 Межрельсовый желоб.
- •77. Водные перевозки нефтепродуктов и нефтей.
- •78. Автомобильные перевозки нефтепродуктов.
- •79.Генплан нефтебазы (перевалочной и распределительной).
- •80. Типы и конструкции резервуаров нефтебаз.
- •81.Оборудование резервуаров нефтебаз.
- •82. Принцип расчета нефтегазовых коллекторов.
- •83. График остаточных напоров сливного ж/д коллектора
- •85. Способы подогрева вязких нефтепродуктов на нефтебазах.
- •86. Потери нефти и нефтепродуктов на нефтебазах. Уменьшение потерь от «больших» и «малых» дыханий.
- •87. Автозаправочные станции.
71. Хранение суг.
Хранилища по назначению подразделяются:
1) Хранилища, находящиеся на ГПЗ и НПЗ;
2) Хранилища на кустовых базах и портовых базах, и резервуарных парках;
3) Хранилища у потребителей газа;
4) Хранилища для сглаживания сезонной неравномерности потребления.
В зависимости от температуры и давления СУГ хранятся следующими способами:
1) Под повышенным давлением и температуре окружающей среды;
2) Под давлением, близким к атмосферному и низкой температуре (изотермическое хранение);
3) В твердом состоянии.
Хранение под давлением осуществляется в баллонах, резервуарах, подземных хранилищах шахтного типа и хранилищах в соляных пластах (разрабатываются впрыскиванием или закачиванием воды; эксплуатируются с рассольной схемой и без нее).
Типы баллонов: 5-тилитровые без обечайки с воротником, 27-литровые баллоны с обечайкой и воротником, 50-литровые с обечайкой и колпаком.
Также используются резервуары стальные (вертикальные и горизонтальные, цилиндрические и сферические).
Сферические резервуары по сравнению с цилиндрическими имеют более совершенную геометрическую форму и требуют меньшего расхода металла на единицу объема емкости за счет уменьшения толщины стенки, благодаря равномерному распределению напряжений в сварных швах и, по контуру всей оболочки. Однако снабжение хранилищ этими резервуарами пока ограничено из-за трудностей, возникающих в процессе изготовления.
Сферические резервуары объемом 600 м3 применяются в основном для хранения бутана на хранилищах заводов-изготовителей.
Цилиндрические резервуары с эллиптическими днищами объемом 25, 50, 100, 175 и 200 м3 устанавливаются горизонтально и получили в нашей стране большее распространение и используются на всех видах хранилищ сжиженного углеводородного газа. Максимальное расчетное давление для пропановых резервуаров – 1,8 МПа, для бутановых – 0,7 МПа, что соответствует климатической зоне с самой высокой расчетной температурой (328 К). Минимальная температура в надземных резервуарах для территории РФ может достигать 233 К. Установку резервуаров следует предусматривать, как правило, наземную, подземная установка допускается при невозможности обеспечения установленных минимальных расстояний до зданий и сооружений, а также для районов с температурой наружного воздуха ниже минимально допустимой.
Применение изотермическое хранение достигается путем искусственного снижения упругости паров хранимого сжиженного газа, что, в свою очередь, приводит к его охлаждению или, наоборот, сжиженный газ искусственно охлаждается, что приводит к снижению упругости его паров. При температуре -42ºС сжиженный пропан можно хранить уже не при повышенном давлении, а при атмосферном, в результате чего уменьшается расчетное давление при определении толщины стенок резервуаров. Достаточно, чтобы стенки выдерживали только гидростатическое давление хранимого продукта, что дает возможность применять тонкостенные резервуары. Это позволяет сократить расход металла в 815 раз в зависимости от хранимого продукта и объема резервуара.
Используются следующие технологические схемы: с комплексной холодильной установкой; с буферной емкостью; с промежуточным хладагентом и льдопородный резервуар.
Хранение в твердом состоянии осуществляется в брикетах, которые представляют собой ячеистую высококонцентрированную эмульсию, состоящую из полимера 5% и СУГ 95%. Полимер образует ячейки, в которых закупоривается СУГ. Для предохранения от воздействия внешних сил на его поверхность наносят слой раствора поливинилового спирта. После высыхания образуется твердая пленка. Брикеты выполняются весом 200, 400 и 800 грамм и упаковывается в коробки.