
- •2. Перспективные направления развития трубопроводного транспорта.
- •3. Состав сооружений магистральных трубопроводов.
- •4. Выбор оптимальной трассы трубопровода.
- •5. Классификация нагрузок и воздействий на магистральный трубопровод.
- •2. Временные длительные:
- •6. Расчет трубопровода на прочность, деформации и устойчивость.
- •7. Очистка, испытание трубопроводов на прочность и проверка на герметичность.
- •8) Обеспечение устойчивости трубопроводов на подводных переходах, на болотистых и многолетнемерзлых грунтах
- •1. Горячие участки (температура всегда положительная);
- •9) Основные этапы внутритрубной диагностики трубопроводов
- •10. Переходы трубопроводов через водные преграды и классификация их по способу строительства.
- •11. Современные способы ремонта газонефтепроводов
- •12. Трубопроводы с переменной толщиной стенки.
- •14. Основное и вспомогательное оборудование нпс.
- •15. Характеристики основных и подпорныхнасосов нпс.
- •16. Совместная работа насосов и трубопроводной сети.
- •17. Расчёт внутриплощадочных трубопроводов.
- •18. Основное и вспомогательное оборудование кс
- •19. Технологические схемы кс. Технологическая схема кс с центробежными нагнетателями.
- •20. Подбор основного и вспомогательного оборудования кс. Подбор основного оборудования кс.
- •Подбор оборудования очистки газа.
- •21. Расчет внутриплощадочных трубопроводов кс.
- •22. Расчет режимов работы нпс и мн.
- •23. Способы увеличения пропускной способности нефтепровода.
- •24. Изменение подпоров перед станциями при изменении вязкости перекачиваемой нефти.
- •25. Нефтепроводы со сбросами и подкачками.
- •26. Режим работы нефтепровода при отключении насосных станций.
- •27.Способы регулирования работы насосных станций мн.
- •28. Состав объектов магистрального газопровода.
- •29. Температурный режим магистрального газопровода.
- •30. Технологический расчет газопроводов.
- •31. Увеличение производительности магистрального газопровода.
- •32. Режим работы газопровода при отключении кс или гпа.
- •33. Эксплуатация газопроводов с учетом скопления жидкости и образования гидратов.
- •34. Эксплуатация нефтепроводов при снижении производительности.
- •35. Эксплуатация мн с учетом отложения воды и парафинов.
- •36. Способы повышения эффективности работы магистральных газопроводов.
- •37. Техническое обслуживание оборудования кс и нс.
- •38. Диагностика технического состояния гпа
- •39.Технологический расчет магистральных нефтепроводов.
- •40. Уравнение баланса напоров. Определение числа нефтеперекачивающих станций.
- •41.Увеличение пропускной способности горячего нефтепровода.
- •42. Особые режимы работы «горячих» нефтепроводов.
- •43. Особенности технологии и преимущества последовательной перекачки нефтепродуктов.
- •44. Гидравлический расчет нефтепродуктопровода при последовательной перекачке.
- •45. Основные вопросы последовательной перекачки нефтепродуктов.
- •46. Прием и реализация смеси нефтепродуктов при последовательной перекачке нефтей и нефтепродуктов.
- •47. Мероприятия по уменьшению количества смеси при последовательной перекачке.
- •48. Режимы работы продуктопроводов при замещении нефтепродуктов.
- •49.Оптимальное число циклов при последовательной перекачке нефтепродуктов.
- •50. Способы перекачки высоковязких и высокозастывающих нефтей и нефтепродуктов.
- •51. Перекачка высоковязких ввн и высокозастывающих взн нефтей и н-продуктов с подогревом.
- •52.Тепловой расчет горячего нефтепровода.
- •53. Гидравлический расчет горячих нефтепроводов.
- •54. Характеристика q-h горячего нефтепровода
- •55. Системы сбора продукции нефтяных скважин.
- •В настоящее время известны следующие системы промыслового сбора продукции нефтяных скважин:
- •56. Системы сбора продукции газовых скважин.
- •57. Гидравлический расчёт промысловых нефтепроводов.
- •Число Рейнольдса для смеси определяется как
- •Кинематическая вязкость двухфазного потока определяется по формуле Манна:
- •Плотность газожидкостной смеси:
- •58. Дожимные насосные станции.
- •59. Технологические схемы установок подготовки газа.
- •60. Сепарация нефти и сепарация природного газа.
- •61. Оборудование установок подготовки нефти и газа к дальнему транспорту.
- •62. Особенности расчета нефтяных и газовых промысловых коллекторов.
- •63. Гидраты природных газов и методы борьбы с ними.
- •Методы борьбы с гидратообразованием.
- •64.Стабилизация нефти.
- •65. Подготовка газа и конденсата к транспорту.
- •66.Одоризация газа
- •67. Газораспределительные системы.
- •68. Технологические схемы и оборудование грс и грп.
- •69. Хранение природного газа.
- •70. Сжиженные углеводородные газы.
- •2. Удельный объем сжиженного газа (обратная величина плотности).
- •71. Хранение суг.
- •72. Технологические процессы и оборудование гнс.
- •73. Товарные нефтепродукты и основы их использования.
- •74. Насосные станции нефтебаз.
- •75. Назначение и категории нефтебаз.
- •76. Железнодорожные перевозки нефтепродуктов.
- •80.4 Межрельсовый желоб.
- •77. Водные перевозки нефтепродуктов и нефтей.
- •78. Автомобильные перевозки нефтепродуктов.
- •79.Генплан нефтебазы (перевалочной и распределительной).
- •80. Типы и конструкции резервуаров нефтебаз.
- •81.Оборудование резервуаров нефтебаз.
- •82. Принцип расчета нефтегазовых коллекторов.
- •83. График остаточных напоров сливного ж/д коллектора
- •85. Способы подогрева вязких нефтепродуктов на нефтебазах.
- •86. Потери нефти и нефтепродуктов на нефтебазах. Уменьшение потерь от «больших» и «малых» дыханий.
- •87. Автозаправочные станции.
62. Особенности расчета нефтяных и газовых промысловых коллекторов.
Особенностью гидравлического расчета промысловых трубопроводов является учет свойств среды, которая является многофазной и неоднородной.
При транспорте продукций нефтяных скважин различают две методики расчета промысловых трубопроводов:
1. предназначена для расчета трубопроводов, транспортирующих нефтяные эмульсии;
2. предназначена для расчета трубопроводов, транспортирующих газонасыщенные нефти.
При транспорте продукции газовых скважин при расчетах учитывается наличие конденсата в транспортируемой среде.
Коллекторы представляют собой трубопроводы с переменным по длине расходом. Потери напора в таком коллекторе складываются из потерь напора на трение на каждом участке:
/39/
где n - число участков длиной li; hi - потери напора на трение на i-м участке коллектора.
Нефтебазовые коллекторы имеют постоянный диаметр с отбором нефтепродукта через равные промежутки длиной l , определяемые расстоянием между сливно-наливными стояками.
Для удобства расчета коллектора потери напора hi лучше вычислять по формуле Лейбензона:
/40/
Тогда потери напора в коллекторе можно записать следующим образом:
/41/
где q - расход нефтепродукта в одном сливно-наливном стояке.
Приняв qn= Q , т.е. максимальному расходу нефтепродукта в коллекторе, anl= L, т.е. расчетной длине коллектора, можем записать:
/42/
Выражение в скобках показывает, во сколько раз потери напора в коллекторе с переменным расходом меньше потерь напора в трубопроводе той же длины с постоянным расходом Q .
Исследуем полученное уравнение /42/ для различных режимов течения.
При
ламинарном режиме
/43/
Поскольку
,
то
/44/
Т.е. в коллекторах с переменным расходом при ламинарном режиме потери напора на трение примерно равны 1/2 гидравлического сопротивления трубопровода той же длины с постоянным расходом.
При
развитом турбулентном режиме течения
(
)
/45/
Поскольку
,
то
/46/
Т.е. при развитом турбулентном режиме потери напора на трение в коллекторе с переменным расходом в 3 раза меньше потерь напора в трубопроводе с постоянным расходом.
63. Гидраты природных газов и методы борьбы с ними.
Природные газы в определенных термодинамических условиях вступают в соединения с водой и образуют гидраты, которые, скапливаясь в промысловых и магистральных газопроводах, существенно увеличивают их гидравлическое сопротивление, и, следовательно, снижают их пропускную способность. Гидраты представляют собой соединения молекулярного типа, возникающие за счёт Ван-дер-Ваальсовых сил притяжения. Образующиеся при этом полости между молекулами воды полностью или частично заполняются молекулами газа. Гидраты природных газов представляют собой неустойчивые соединения, которые при повышении температуры или понижении давления разлагаются на газ и воду.
Условия гидратообразования:
1
.
Наличие термодинамических условий
существования гидратов
Оценивается по равновесным кривым гидратообразования. Здесь 1<2<3. Над кривой гидраты существуют. После бутана газы гидратов не образуют.
2. Газ по воде должен быть в насыщенном состоянии (капельная вода).
Оценивается по кривым влагосодержания газа в насыщенном состоянии. Здесь Р1<P2<P3. График показывает, сколько воды может содержать газ в виде паров.
З
она
фактического гидратообразования
определяется построением следующего
графика
(
t)
и (W)
– параметры газа, определяемые по
графикам 1 и 2.
Участок а-б это участок гидратообразования.