
- •2. Перспективные направления развития трубопроводного транспорта.
- •3. Состав сооружений магистральных трубопроводов.
- •4. Выбор оптимальной трассы трубопровода.
- •5. Классификация нагрузок и воздействий на магистральный трубопровод.
- •2. Временные длительные:
- •6. Расчет трубопровода на прочность, деформации и устойчивость.
- •7. Очистка, испытание трубопроводов на прочность и проверка на герметичность.
- •8) Обеспечение устойчивости трубопроводов на подводных переходах, на болотистых и многолетнемерзлых грунтах
- •1. Горячие участки (температура всегда положительная);
- •9) Основные этапы внутритрубной диагностики трубопроводов
- •10. Переходы трубопроводов через водные преграды и классификация их по способу строительства.
- •11. Современные способы ремонта газонефтепроводов
- •12. Трубопроводы с переменной толщиной стенки.
- •14. Основное и вспомогательное оборудование нпс.
- •15. Характеристики основных и подпорныхнасосов нпс.
- •16. Совместная работа насосов и трубопроводной сети.
- •17. Расчёт внутриплощадочных трубопроводов.
- •18. Основное и вспомогательное оборудование кс
- •19. Технологические схемы кс. Технологическая схема кс с центробежными нагнетателями.
- •20. Подбор основного и вспомогательного оборудования кс. Подбор основного оборудования кс.
- •Подбор оборудования очистки газа.
- •21. Расчет внутриплощадочных трубопроводов кс.
- •22. Расчет режимов работы нпс и мн.
- •23. Способы увеличения пропускной способности нефтепровода.
- •24. Изменение подпоров перед станциями при изменении вязкости перекачиваемой нефти.
- •25. Нефтепроводы со сбросами и подкачками.
- •26. Режим работы нефтепровода при отключении насосных станций.
- •27.Способы регулирования работы насосных станций мн.
- •28. Состав объектов магистрального газопровода.
- •29. Температурный режим магистрального газопровода.
- •30. Технологический расчет газопроводов.
- •31. Увеличение производительности магистрального газопровода.
- •32. Режим работы газопровода при отключении кс или гпа.
- •33. Эксплуатация газопроводов с учетом скопления жидкости и образования гидратов.
- •34. Эксплуатация нефтепроводов при снижении производительности.
- •35. Эксплуатация мн с учетом отложения воды и парафинов.
- •36. Способы повышения эффективности работы магистральных газопроводов.
- •37. Техническое обслуживание оборудования кс и нс.
- •38. Диагностика технического состояния гпа
- •39.Технологический расчет магистральных нефтепроводов.
- •40. Уравнение баланса напоров. Определение числа нефтеперекачивающих станций.
- •41.Увеличение пропускной способности горячего нефтепровода.
- •42. Особые режимы работы «горячих» нефтепроводов.
- •43. Особенности технологии и преимущества последовательной перекачки нефтепродуктов.
- •44. Гидравлический расчет нефтепродуктопровода при последовательной перекачке.
- •45. Основные вопросы последовательной перекачки нефтепродуктов.
- •46. Прием и реализация смеси нефтепродуктов при последовательной перекачке нефтей и нефтепродуктов.
- •47. Мероприятия по уменьшению количества смеси при последовательной перекачке.
- •48. Режимы работы продуктопроводов при замещении нефтепродуктов.
- •49.Оптимальное число циклов при последовательной перекачке нефтепродуктов.
- •50. Способы перекачки высоковязких и высокозастывающих нефтей и нефтепродуктов.
- •51. Перекачка высоковязких ввн и высокозастывающих взн нефтей и н-продуктов с подогревом.
- •52.Тепловой расчет горячего нефтепровода.
- •53. Гидравлический расчет горячих нефтепроводов.
- •54. Характеристика q-h горячего нефтепровода
- •55. Системы сбора продукции нефтяных скважин.
- •В настоящее время известны следующие системы промыслового сбора продукции нефтяных скважин:
- •56. Системы сбора продукции газовых скважин.
- •57. Гидравлический расчёт промысловых нефтепроводов.
- •Число Рейнольдса для смеси определяется как
- •Кинематическая вязкость двухфазного потока определяется по формуле Манна:
- •Плотность газожидкостной смеси:
- •58. Дожимные насосные станции.
- •59. Технологические схемы установок подготовки газа.
- •60. Сепарация нефти и сепарация природного газа.
- •61. Оборудование установок подготовки нефти и газа к дальнему транспорту.
- •62. Особенности расчета нефтяных и газовых промысловых коллекторов.
- •63. Гидраты природных газов и методы борьбы с ними.
- •Методы борьбы с гидратообразованием.
- •64.Стабилизация нефти.
- •65. Подготовка газа и конденсата к транспорту.
- •66.Одоризация газа
- •67. Газораспределительные системы.
- •68. Технологические схемы и оборудование грс и грп.
- •69. Хранение природного газа.
- •70. Сжиженные углеводородные газы.
- •2. Удельный объем сжиженного газа (обратная величина плотности).
- •71. Хранение суг.
- •72. Технологические процессы и оборудование гнс.
- •73. Товарные нефтепродукты и основы их использования.
- •74. Насосные станции нефтебаз.
- •75. Назначение и категории нефтебаз.
- •76. Железнодорожные перевозки нефтепродуктов.
- •80.4 Межрельсовый желоб.
- •77. Водные перевозки нефтепродуктов и нефтей.
- •78. Автомобильные перевозки нефтепродуктов.
- •79.Генплан нефтебазы (перевалочной и распределительной).
- •80. Типы и конструкции резервуаров нефтебаз.
- •81.Оборудование резервуаров нефтебаз.
- •82. Принцип расчета нефтегазовых коллекторов.
- •83. График остаточных напоров сливного ж/д коллектора
- •85. Способы подогрева вязких нефтепродуктов на нефтебазах.
- •86. Потери нефти и нефтепродуктов на нефтебазах. Уменьшение потерь от «больших» и «малых» дыханий.
- •87. Автозаправочные станции.
53. Гидравлический расчет горячих нефтепроводов.
Гидравлический режим горячих нефтепроводов в значительной степени определяется условиями его теплообмена с окружающей средой. С увеличением температуры транспортируемой нефти снижается ее вязкость и уменьшается потеря напора. При понижении температуры наблюдается обратная картина. Температурный режим нефтепровода
зависит от пропускной способности, условий передачи тепла от нефти в окружающую среду и других факторов. Используя зависимость изменения температуры нефти, а следовательно, и ее вязкости по длине трубопровода, можно найти распределение давления по длине нефтепровода, транспортирующего высоковязкие нефти в подогретом состоянии, и оценить потери напора на ее перекачку. Для определения потерь напора используем уравнение Дарси—
Лейбензона в дифференциальной форме:
г
де
— разность геодезических отметок начала
и конца трубопровода.
С
учетом полученных результатов потери
напора на перекачку подогретой
высоковязкой нефти составят:
Ранее
коэффициент
определялся для средней по длине
нефтепровода температуры. Если величину
относить к элементарному участку, то в
соответствии с (2) получим:
В тех случаях, когда в трубопроводе наблюдаются два режима течения — турбулентный в начале и ламинарный в конце, определяют отдельно потери для обоих участков.
54. Характеристика q-h горячего нефтепровода
Н
апорная
характеристика горячего тп.
Графическая напорная характеристика горячего трубопровода, описывающая зависимость Q—Н согласно полученной формуле потерь напора на трение, изображена на рис. Напорную характеристику можно разделить вертикальными прямыми на три зоны. В зоне малых расходов / медленно движущаяся нефть успевает охладиться еще на начальном участке трубопровода до температуры, близкой к температуре окружающей среды, и на оставшейся большей части трубопровода движется холодная нефть с практически постоянной высокой вязкостью. Графически в этой зоне напорная характеристика имеет вид прямой линии с большим углом наклона к оси абсцисс из-за высокой вязкости. В зоне больших расходов /// нефть, двигаясь с большой скоростью, успевает пройти до конца трубопровода, сохранив еще высокую температуру. Поскольку средняя температура потока в этой зоне высока, напорная характеристика близка к прямой линии (ламинарный режим), с гораздо меньшим углом наклона к оси абсцисс, чем в зоне /, из-за малой вязкости нефти. Как в I, так и в /// зоне потери напора с увеличением расхода возрастают. В зоне // потери напора возрастают с уменьшением расхода. Это объясняется тем, что с уменьшением расхода в этой зоне (зоне средних расходов), а следовательно, и с уменьшением скорости движения нефти каждая
ее порция дольше находится в трубопроводе и успевает остыть. В результате снижается средняя температура и возрастает средняя вязкость нефти, причем относительный рост вязкости в этой зоне больше, чем относительное уменьшение расхода, что приводит к росту потери напора при уменьшении расхода. Рабочей является только /// зона
со сравнительно большими расходами; / зона является нерабочей, так как при тех же напорах на станции расходы здесь будут в несколько раз меньше, чем в третьей зоне. Если потери напора в точке перехода из зоны / в зону /// превышает максимальный напор, развиваемый насосной станцией, то при попадании рабочей точки системы насосная станция — трубопровод во // зону, являющуюся неустойчивой, расход будет самопроизвольно сокращаться и в конце концов
рабочая точка перейдет в / зону. Это означает практически остановку трубопровода, поскольку расход становится очень малым. Если по каким-то причинам рабочая точка горячего трубопровода приблизилась к границе зоны // или уже перешла в эту зону, то возвратить ее в рабочую /// зону можно одним из следующих способов: быстро повысить температуру нагрева нефти; быстро увеличить напор на станциях подключением дополнительных насосов; начать закачку в трубопровод менее вязкого продукта, не снижая температуру нагрева нефти. Если насосная станция может развивать напор, превышающий максимальные потери напора на границе / и // зон, причем эти потери не превышают допустимый напор из условий прочности трубопровода и оборудования на станции, то возвращение из / зоны в /// не представляет трудностей.