
- •2. Перспективные направления развития трубопроводного транспорта.
- •3. Состав сооружений магистральных трубопроводов.
- •4. Выбор оптимальной трассы трубопровода.
- •5. Классификация нагрузок и воздействий на магистральный трубопровод.
- •2. Временные длительные:
- •6. Расчет трубопровода на прочность, деформации и устойчивость.
- •7. Очистка, испытание трубопроводов на прочность и проверка на герметичность.
- •8) Обеспечение устойчивости трубопроводов на подводных переходах, на болотистых и многолетнемерзлых грунтах
- •1. Горячие участки (температура всегда положительная);
- •9) Основные этапы внутритрубной диагностики трубопроводов
- •10. Переходы трубопроводов через водные преграды и классификация их по способу строительства.
- •11. Современные способы ремонта газонефтепроводов
- •12. Трубопроводы с переменной толщиной стенки.
- •14. Основное и вспомогательное оборудование нпс.
- •15. Характеристики основных и подпорныхнасосов нпс.
- •16. Совместная работа насосов и трубопроводной сети.
- •17. Расчёт внутриплощадочных трубопроводов.
- •18. Основное и вспомогательное оборудование кс
- •19. Технологические схемы кс. Технологическая схема кс с центробежными нагнетателями.
- •20. Подбор основного и вспомогательного оборудования кс. Подбор основного оборудования кс.
- •Подбор оборудования очистки газа.
- •21. Расчет внутриплощадочных трубопроводов кс.
- •22. Расчет режимов работы нпс и мн.
- •23. Способы увеличения пропускной способности нефтепровода.
- •24. Изменение подпоров перед станциями при изменении вязкости перекачиваемой нефти.
- •25. Нефтепроводы со сбросами и подкачками.
- •26. Режим работы нефтепровода при отключении насосных станций.
- •27.Способы регулирования работы насосных станций мн.
- •28. Состав объектов магистрального газопровода.
- •29. Температурный режим магистрального газопровода.
- •30. Технологический расчет газопроводов.
- •31. Увеличение производительности магистрального газопровода.
- •32. Режим работы газопровода при отключении кс или гпа.
- •33. Эксплуатация газопроводов с учетом скопления жидкости и образования гидратов.
- •34. Эксплуатация нефтепроводов при снижении производительности.
- •35. Эксплуатация мн с учетом отложения воды и парафинов.
- •36. Способы повышения эффективности работы магистральных газопроводов.
- •37. Техническое обслуживание оборудования кс и нс.
- •38. Диагностика технического состояния гпа
- •39.Технологический расчет магистральных нефтепроводов.
- •40. Уравнение баланса напоров. Определение числа нефтеперекачивающих станций.
- •41.Увеличение пропускной способности горячего нефтепровода.
- •42. Особые режимы работы «горячих» нефтепроводов.
- •43. Особенности технологии и преимущества последовательной перекачки нефтепродуктов.
- •44. Гидравлический расчет нефтепродуктопровода при последовательной перекачке.
- •45. Основные вопросы последовательной перекачки нефтепродуктов.
- •46. Прием и реализация смеси нефтепродуктов при последовательной перекачке нефтей и нефтепродуктов.
- •47. Мероприятия по уменьшению количества смеси при последовательной перекачке.
- •48. Режимы работы продуктопроводов при замещении нефтепродуктов.
- •49.Оптимальное число циклов при последовательной перекачке нефтепродуктов.
- •50. Способы перекачки высоковязких и высокозастывающих нефтей и нефтепродуктов.
- •51. Перекачка высоковязких ввн и высокозастывающих взн нефтей и н-продуктов с подогревом.
- •52.Тепловой расчет горячего нефтепровода.
- •53. Гидравлический расчет горячих нефтепроводов.
- •54. Характеристика q-h горячего нефтепровода
- •55. Системы сбора продукции нефтяных скважин.
- •В настоящее время известны следующие системы промыслового сбора продукции нефтяных скважин:
- •56. Системы сбора продукции газовых скважин.
- •57. Гидравлический расчёт промысловых нефтепроводов.
- •Число Рейнольдса для смеси определяется как
- •Кинематическая вязкость двухфазного потока определяется по формуле Манна:
- •Плотность газожидкостной смеси:
- •58. Дожимные насосные станции.
- •59. Технологические схемы установок подготовки газа.
- •60. Сепарация нефти и сепарация природного газа.
- •61. Оборудование установок подготовки нефти и газа к дальнему транспорту.
- •62. Особенности расчета нефтяных и газовых промысловых коллекторов.
- •63. Гидраты природных газов и методы борьбы с ними.
- •Методы борьбы с гидратообразованием.
- •64.Стабилизация нефти.
- •65. Подготовка газа и конденсата к транспорту.
- •66.Одоризация газа
- •67. Газораспределительные системы.
- •68. Технологические схемы и оборудование грс и грп.
- •69. Хранение природного газа.
- •70. Сжиженные углеводородные газы.
- •2. Удельный объем сжиженного газа (обратная величина плотности).
- •71. Хранение суг.
- •72. Технологические процессы и оборудование гнс.
- •73. Товарные нефтепродукты и основы их использования.
- •74. Насосные станции нефтебаз.
- •75. Назначение и категории нефтебаз.
- •76. Железнодорожные перевозки нефтепродуктов.
- •80.4 Межрельсовый желоб.
- •77. Водные перевозки нефтепродуктов и нефтей.
- •78. Автомобильные перевозки нефтепродуктов.
- •79.Генплан нефтебазы (перевалочной и распределительной).
- •80. Типы и конструкции резервуаров нефтебаз.
- •81.Оборудование резервуаров нефтебаз.
- •82. Принцип расчета нефтегазовых коллекторов.
- •83. График остаточных напоров сливного ж/д коллектора
- •85. Способы подогрева вязких нефтепродуктов на нефтебазах.
- •86. Потери нефти и нефтепродуктов на нефтебазах. Уменьшение потерь от «больших» и «малых» дыханий.
- •87. Автозаправочные станции.
51. Перекачка высоковязких ввн и высокозастывающих взн нефтей и н-продуктов с подогревом.
Наиболее распространенным способом трубопроводного транспорта высоковязких и высокозастывающих нефтей в настоящее время является их перекачка с подогревом.
Существует несколько вариантов перекачки высокозастывающих нефтей с подогревом. Для коротких (чаще нефтебазовых) трубопроводов используют методы электроподогрева:
• путем пропуска электрического тока по телу трубы;
• применением электронагревательных элементов в виде специальных кабелей
и лент.
Прямой электроподогрев трубы заключается в подсоединении источника переменного тока напряжением не выше 50 В к изолированному участку трубопровода. При прохождении по нему электрического тока согласно эффекту Джоуля выделяется тепло и происходит равномерный нагрев стенок трубопровода, а также находящегося в нем продукта. В качестве источника питания,
как правило, применяются однофазные трансформаторы. С учетом требований техники безопасности и незначительного сопротивления труб напряжение источника питания составляет 12.. .36 В. Максимальная длина трубопровода, обогреваемого от одного источника питания, равна 1200 м. При большей длине обогреваемый трубопровод разбивается на несколько самостоятельных
участков и питание подводится к каждому из них в отдельности. В этом случае стоимость электрической системы подогрева значительно возрастает за счет большого числа пунктов питания и длины соединительных проводов. Использование данного метода на магистральных трубопроводах сдерживается и по техническим причинам: нагреваемый участок должен быть электрически изолирован от грунта, чтобы предотвратить большие утечки тока.
Более распространены электронагревательные элементы в виде кабелей и лент. Кабели высокого сопротивления имеют термостойкую электроизоляцию и защиту от механических повреждений. Монтируются в основном с наружной поверхности трубы. Энергопотребление нагревательного кабеля составляет около 100 Вт на 1 м трубы. Прокладка нагреваемого кабеля внутри
трубы более эффективна, чем снаружи, так как все тепло идет на разогрев нефти. Недостатком греющих кабелей является неравномерность нагрева трубы по периметру, что приводит к необходимости поддерживать на кабеле высокую температуру. Мощность, потребляемая греющим кабелем, достигает 4000 кВт, а обогреваемая длина 13,2 км.
Для магистральных трубопроводов наибольшее распространение получил способ ≪горячей≫ перекачки, предусматривающий нагрев нефти перед ее закачкой в трубопровод и периодический подогрев нефти по мере ее остывания в процессе движения. Принципиальная схема такой перекачки приведена на рис.
Нефть с промысла по трубопроводу 1 подается в резервуарный парк 2 головной перекачивающей станции. Резервуары оборудованы подогревательными устройствами, с помощью которых поддерживается температура нефти, позволяющая откачать ее подпорными насосами 3. Они прокачивают нефть через дополнительные подогреватели и подают на прием магистральных насосов 5. Магистральными насосами нефть закачивается в магистральный трубопровод 6. По мере движения в магистральном трубопроводе нефть за счет теплообмена с окружающей средой остывает. Поэтому по трассе трубопровода через каждые 25... 100 км устанавливают пункты подогрева 7. Далее нефть попадает на промежуточную насосно-тепловую станцию НТС, где также установлены подогреватели и все повторяется снова. В конце концов нефть закачивается в резервуары 9 конечного пункта, также оборудованные системой подогрева.