
- •2. Перспективные направления развития трубопроводного транспорта.
- •3. Состав сооружений магистральных трубопроводов.
- •4. Выбор оптимальной трассы трубопровода.
- •5. Классификация нагрузок и воздействий на магистральный трубопровод.
- •2. Временные длительные:
- •6. Расчет трубопровода на прочность, деформации и устойчивость.
- •7. Очистка, испытание трубопроводов на прочность и проверка на герметичность.
- •8) Обеспечение устойчивости трубопроводов на подводных переходах, на болотистых и многолетнемерзлых грунтах
- •1. Горячие участки (температура всегда положительная);
- •9) Основные этапы внутритрубной диагностики трубопроводов
- •10. Переходы трубопроводов через водные преграды и классификация их по способу строительства.
- •11. Современные способы ремонта газонефтепроводов
- •12. Трубопроводы с переменной толщиной стенки.
- •14. Основное и вспомогательное оборудование нпс.
- •15. Характеристики основных и подпорныхнасосов нпс.
- •16. Совместная работа насосов и трубопроводной сети.
- •17. Расчёт внутриплощадочных трубопроводов.
- •18. Основное и вспомогательное оборудование кс
- •19. Технологические схемы кс. Технологическая схема кс с центробежными нагнетателями.
- •20. Подбор основного и вспомогательного оборудования кс. Подбор основного оборудования кс.
- •Подбор оборудования очистки газа.
- •21. Расчет внутриплощадочных трубопроводов кс.
- •22. Расчет режимов работы нпс и мн.
- •23. Способы увеличения пропускной способности нефтепровода.
- •24. Изменение подпоров перед станциями при изменении вязкости перекачиваемой нефти.
- •25. Нефтепроводы со сбросами и подкачками.
- •26. Режим работы нефтепровода при отключении насосных станций.
- •27.Способы регулирования работы насосных станций мн.
- •28. Состав объектов магистрального газопровода.
- •29. Температурный режим магистрального газопровода.
- •30. Технологический расчет газопроводов.
- •31. Увеличение производительности магистрального газопровода.
- •32. Режим работы газопровода при отключении кс или гпа.
- •33. Эксплуатация газопроводов с учетом скопления жидкости и образования гидратов.
- •34. Эксплуатация нефтепроводов при снижении производительности.
- •35. Эксплуатация мн с учетом отложения воды и парафинов.
- •36. Способы повышения эффективности работы магистральных газопроводов.
- •37. Техническое обслуживание оборудования кс и нс.
- •38. Диагностика технического состояния гпа
- •39.Технологический расчет магистральных нефтепроводов.
- •40. Уравнение баланса напоров. Определение числа нефтеперекачивающих станций.
- •41.Увеличение пропускной способности горячего нефтепровода.
- •42. Особые режимы работы «горячих» нефтепроводов.
- •43. Особенности технологии и преимущества последовательной перекачки нефтепродуктов.
- •44. Гидравлический расчет нефтепродуктопровода при последовательной перекачке.
- •45. Основные вопросы последовательной перекачки нефтепродуктов.
- •46. Прием и реализация смеси нефтепродуктов при последовательной перекачке нефтей и нефтепродуктов.
- •47. Мероприятия по уменьшению количества смеси при последовательной перекачке.
- •48. Режимы работы продуктопроводов при замещении нефтепродуктов.
- •49.Оптимальное число циклов при последовательной перекачке нефтепродуктов.
- •50. Способы перекачки высоковязких и высокозастывающих нефтей и нефтепродуктов.
- •51. Перекачка высоковязких ввн и высокозастывающих взн нефтей и н-продуктов с подогревом.
- •52.Тепловой расчет горячего нефтепровода.
- •53. Гидравлический расчет горячих нефтепроводов.
- •54. Характеристика q-h горячего нефтепровода
- •55. Системы сбора продукции нефтяных скважин.
- •В настоящее время известны следующие системы промыслового сбора продукции нефтяных скважин:
- •56. Системы сбора продукции газовых скважин.
- •57. Гидравлический расчёт промысловых нефтепроводов.
- •Число Рейнольдса для смеси определяется как
- •Кинематическая вязкость двухфазного потока определяется по формуле Манна:
- •Плотность газожидкостной смеси:
- •58. Дожимные насосные станции.
- •59. Технологические схемы установок подготовки газа.
- •60. Сепарация нефти и сепарация природного газа.
- •61. Оборудование установок подготовки нефти и газа к дальнему транспорту.
- •62. Особенности расчета нефтяных и газовых промысловых коллекторов.
- •63. Гидраты природных газов и методы борьбы с ними.
- •Методы борьбы с гидратообразованием.
- •64.Стабилизация нефти.
- •65. Подготовка газа и конденсата к транспорту.
- •66.Одоризация газа
- •67. Газораспределительные системы.
- •68. Технологические схемы и оборудование грс и грп.
- •69. Хранение природного газа.
- •70. Сжиженные углеводородные газы.
- •2. Удельный объем сжиженного газа (обратная величина плотности).
- •71. Хранение суг.
- •72. Технологические процессы и оборудование гнс.
- •73. Товарные нефтепродукты и основы их использования.
- •74. Насосные станции нефтебаз.
- •75. Назначение и категории нефтебаз.
- •76. Железнодорожные перевозки нефтепродуктов.
- •80.4 Межрельсовый желоб.
- •77. Водные перевозки нефтепродуктов и нефтей.
- •78. Автомобильные перевозки нефтепродуктов.
- •79.Генплан нефтебазы (перевалочной и распределительной).
- •80. Типы и конструкции резервуаров нефтебаз.
- •81.Оборудование резервуаров нефтебаз.
- •82. Принцип расчета нефтегазовых коллекторов.
- •83. График остаточных напоров сливного ж/д коллектора
- •85. Способы подогрева вязких нефтепродуктов на нефтебазах.
- •86. Потери нефти и нефтепродуктов на нефтебазах. Уменьшение потерь от «больших» и «малых» дыханий.
- •87. Автозаправочные станции.
46. Прием и реализация смеси нефтепродуктов при последовательной перекачке нефтей и нефтепродуктов.
Образующаяся в нефтепродуктопроводе смесь перекачиваемых последовательно нефтепродуктов принимается, как правило, в конечном пункте нефтепродуктопровода и реализуется одним из следующих способов:
добавляется в допустимых количествах к соответствующим нефтепродуктам;
отправляется на ближайший НПЗ в качестве сырья для переработки совместно с нефтью.
Нефтепродукты, поступающие с НПЗ, имеют, как правило, некоторый «запас качества» по отдельным показателям. Этот «запас качества» необходим для компенсации возможного ухудшения качественных характеристик топлив при их транспорте и хранении.
Технология приёма смеси из нефтепродуктопровода в резервуары конечного пункта определяется свойствами компонентов смеси, запасом качества и количеством нефтепродуктов в резервуаре.
При большом объёме резервуаров с нефтепродуктами и значительном «запасе качества» у них иногда можно всю смесь прямо из нефтепродуктопровода распределить по резервуарам с перекачиваемыми нефтепродуктами.
Смесь разносортных нефтепродуктов обычно делят на две части и принимают в два отдельных резервуара. При этом в зависимости от состава смеси и запаса качества в резервуарах соответствующих товарных нефтепродуктов составляется карта смешения с указанием, сколько и какой смеси можно добавить в резервуар с конкретным нефтепродуктом. При подходе зоны смеси к конечному пункту её головная часть направляется в резервуар с замещаемым нефтепродуктом, хвостовая часть – в резервуар с замещающим нефтепродуктом, а остальная основная часть смеси принимается в отдельный резервуар. Допустимое количество нефтепродукта Б, которое можно принять вместе со смесью в резервуар с нефтепродуктом А, определяется исходя из «запаса качества» замещаемого нефтепродукта и его количества в резервуаре с нефтепродуктом Б. Момент переключения задвижек для отсечки головной части смеси определяют по графику изменения концентрации смеси по её длине, измеряемой прибором контроля. Аналогично поступают и при отсечке хвостовой части смеси в резервуар с нефтепродуктом Б.
На конечном пункте устанавливают обычно два прибора контроля, измеряющих концентрацию нефтепродуктов в зоне смеси: первый в 10-15 м от конечного пункта, а второй на конечном пункте. Зная допустимые количества примеси в резервуарах с нефтепродуктами А и Б, по графику изменения концентрации по длине зоны смеси определяют графическим интегрированием моменты отсечки головной и хвостовой частей смеси.
47. Мероприятия по уменьшению количества смеси при последовательной перекачке.
Для уменьшения количества смеси на магистральных нефтепродуктопроводах предусматривают организационные мероприятия, а также применяют разделители для полного или частичного разобщения последовательно перекачиваемых нефтепродуктов.
Организационные мероприятия предусматривают:
- перекачку при нормальных и повышенных скоростях турбулентного потока нефтепродуктов (при Re>10000), чтобы уменьшить эффективный коэффициент диффузии;
- правильный выбор порядка следования партии нефтепродуктов, обеспечивающего меньшие затраты на приём и реализацию смеси;
- максимально увеличить партии нефтепродуктов исходя из возможности резервуарного парка.
- применение быстродействующих задвижек для уменьшения количества первичной смеси;
- предотвращение остановок последовательной перекачки.
Дальнейшее уменьшение количества смеси ниже этого минимума можно обеспечить, лишь применяя разделители, помещаемые в зону последовательно перекачиваемых нефтепродуктов. Разделители могут быть жидкостные и твёрдые.
Жидкостный разделитель представляет собой буферную жидкость, помещаемую между последовательно перекачиваемыми нефтепродуктами. В качестве жидкого разделителя применяют какой-либо нефтепродукт или смесь, образовавшуюся ранее. В качестве разделителей стали чаще применять загущенные жидкости (так называемые полужидкие или гелеобразные разделители).
Твердые разделители представляют собой механические устройства, которые находятся между перекачиваемыми нефтепродуктами и перемещаются вместе с ними по трубопроводу. Эти устройства должны касаться внутренней стенки трубопровода и предохранять тем самым продукты от смешения. Эффективность таких разделителей во многом зависит от надёжного контакта с поверхностью трубы в течение всего срока движения.
Твердые разделители условно делят на манжетные и сферические. Манжеты у разделителей второго типа и сами разделители первого типа изготавливают из эластичного износостойкого материала, в основном из маслобензостойкой резины или полимерных материалов. При последовательной перекачке нефтепродуктов широко применяют шаровые резиновые разделители, а при последовательной перекачке нефтей – манжетные. На ПНПС производится смена разделителей: прием перед станцией и запуск после станции другого разделителя. Для более лучшего разделения нефтепродуктов в зону их контакта помещают до трех разделителей. Опыт применения шаровых разделителей при последовательной перекачке показал, что они позволяют уменьшить количество смеси на 20-40%.