
- •2. Перспективные направления развития трубопроводного транспорта.
- •3. Состав сооружений магистральных трубопроводов.
- •4. Выбор оптимальной трассы трубопровода.
- •5. Классификация нагрузок и воздействий на магистральный трубопровод.
- •2. Временные длительные:
- •6. Расчет трубопровода на прочность, деформации и устойчивость.
- •7. Очистка, испытание трубопроводов на прочность и проверка на герметичность.
- •8) Обеспечение устойчивости трубопроводов на подводных переходах, на болотистых и многолетнемерзлых грунтах
- •1. Горячие участки (температура всегда положительная);
- •9) Основные этапы внутритрубной диагностики трубопроводов
- •10. Переходы трубопроводов через водные преграды и классификация их по способу строительства.
- •11. Современные способы ремонта газонефтепроводов
- •12. Трубопроводы с переменной толщиной стенки.
- •14. Основное и вспомогательное оборудование нпс.
- •15. Характеристики основных и подпорныхнасосов нпс.
- •16. Совместная работа насосов и трубопроводной сети.
- •17. Расчёт внутриплощадочных трубопроводов.
- •18. Основное и вспомогательное оборудование кс
- •19. Технологические схемы кс. Технологическая схема кс с центробежными нагнетателями.
- •20. Подбор основного и вспомогательного оборудования кс. Подбор основного оборудования кс.
- •Подбор оборудования очистки газа.
- •21. Расчет внутриплощадочных трубопроводов кс.
- •22. Расчет режимов работы нпс и мн.
- •23. Способы увеличения пропускной способности нефтепровода.
- •24. Изменение подпоров перед станциями при изменении вязкости перекачиваемой нефти.
- •25. Нефтепроводы со сбросами и подкачками.
- •26. Режим работы нефтепровода при отключении насосных станций.
- •27.Способы регулирования работы насосных станций мн.
- •28. Состав объектов магистрального газопровода.
- •29. Температурный режим магистрального газопровода.
- •30. Технологический расчет газопроводов.
- •31. Увеличение производительности магистрального газопровода.
- •32. Режим работы газопровода при отключении кс или гпа.
- •33. Эксплуатация газопроводов с учетом скопления жидкости и образования гидратов.
- •34. Эксплуатация нефтепроводов при снижении производительности.
- •35. Эксплуатация мн с учетом отложения воды и парафинов.
- •36. Способы повышения эффективности работы магистральных газопроводов.
- •37. Техническое обслуживание оборудования кс и нс.
- •38. Диагностика технического состояния гпа
- •39.Технологический расчет магистральных нефтепроводов.
- •40. Уравнение баланса напоров. Определение числа нефтеперекачивающих станций.
- •41.Увеличение пропускной способности горячего нефтепровода.
- •42. Особые режимы работы «горячих» нефтепроводов.
- •43. Особенности технологии и преимущества последовательной перекачки нефтепродуктов.
- •44. Гидравлический расчет нефтепродуктопровода при последовательной перекачке.
- •45. Основные вопросы последовательной перекачки нефтепродуктов.
- •46. Прием и реализация смеси нефтепродуктов при последовательной перекачке нефтей и нефтепродуктов.
- •47. Мероприятия по уменьшению количества смеси при последовательной перекачке.
- •48. Режимы работы продуктопроводов при замещении нефтепродуктов.
- •49.Оптимальное число циклов при последовательной перекачке нефтепродуктов.
- •50. Способы перекачки высоковязких и высокозастывающих нефтей и нефтепродуктов.
- •51. Перекачка высоковязких ввн и высокозастывающих взн нефтей и н-продуктов с подогревом.
- •52.Тепловой расчет горячего нефтепровода.
- •53. Гидравлический расчет горячих нефтепроводов.
- •54. Характеристика q-h горячего нефтепровода
- •55. Системы сбора продукции нефтяных скважин.
- •В настоящее время известны следующие системы промыслового сбора продукции нефтяных скважин:
- •56. Системы сбора продукции газовых скважин.
- •57. Гидравлический расчёт промысловых нефтепроводов.
- •Число Рейнольдса для смеси определяется как
- •Кинематическая вязкость двухфазного потока определяется по формуле Манна:
- •Плотность газожидкостной смеси:
- •58. Дожимные насосные станции.
- •59. Технологические схемы установок подготовки газа.
- •60. Сепарация нефти и сепарация природного газа.
- •61. Оборудование установок подготовки нефти и газа к дальнему транспорту.
- •62. Особенности расчета нефтяных и газовых промысловых коллекторов.
- •63. Гидраты природных газов и методы борьбы с ними.
- •Методы борьбы с гидратообразованием.
- •64.Стабилизация нефти.
- •65. Подготовка газа и конденсата к транспорту.
- •66.Одоризация газа
- •67. Газораспределительные системы.
- •68. Технологические схемы и оборудование грс и грп.
- •69. Хранение природного газа.
- •70. Сжиженные углеводородные газы.
- •2. Удельный объем сжиженного газа (обратная величина плотности).
- •71. Хранение суг.
- •72. Технологические процессы и оборудование гнс.
- •73. Товарные нефтепродукты и основы их использования.
- •74. Насосные станции нефтебаз.
- •75. Назначение и категории нефтебаз.
- •76. Железнодорожные перевозки нефтепродуктов.
- •80.4 Межрельсовый желоб.
- •77. Водные перевозки нефтепродуктов и нефтей.
- •78. Автомобильные перевозки нефтепродуктов.
- •79.Генплан нефтебазы (перевалочной и распределительной).
- •80. Типы и конструкции резервуаров нефтебаз.
- •81.Оборудование резервуаров нефтебаз.
- •82. Принцип расчета нефтегазовых коллекторов.
- •83. График остаточных напоров сливного ж/д коллектора
- •85. Способы подогрева вязких нефтепродуктов на нефтебазах.
- •86. Потери нефти и нефтепродуктов на нефтебазах. Уменьшение потерь от «больших» и «малых» дыханий.
- •87. Автозаправочные станции.
18. Основное и вспомогательное оборудование кс
КС на магистральных газопроводов предназначены для компримирования (сжатия газа) и придания ему, таким образом, упругой энергии, за счет которой газ движется по трубопроводу и преодолевает его сопротивление. Энергии, передаваемой КС газу, недостаточно для продвижения его до конца магистрали. Поэтому по пути движения газа энергия его периодически возобновляется на КС, расположенных по трассе г/пр через 100–200 км. Необходимое кол-во КС и его расстановка их трассе производится на основе гидравлического расчета магистрали.
В целом КС классифицируются по след признакам:
1) по расположению по трассе;
2) по типу компрессорных машин;
3) по типу привода компрессорных машин.
По расположению по трассе:
- головные КС (ГКС);
- промежуточные КС;
- дожимные КС (ДКС).
ГКС располагаются в голове магистрали и служат для приема газа с промыслов и подачи его в магистраль. На ГКС помимо компримирования газа может проводиться подготовка газа к транспорту на дальние расстояния. В частности его очистка, сепарация, осушка, очистка от сероводорода и CO2, а также одоризация.
Промежуточная КС осуществляет только компримирование газа, но на всех КС обязательно осуществляются такие операции, как очистка газа от механических примесей на входе КС и охлаждение газа после его компримирования. Очистка газа производится с помощью пылеуловителей (при одноступенчатой очистке) и с помощью пылеуловителей и фильтров-сепараторов (при 2-х ступенчатой очистке).
По типу используемых компрессорных машин: станции с поршневыми компрессорами; станции с центробежными нагнетателями (ЦБН), которые в свою очередь делятся на: КС с полнонапорными нагнетателями и КС с неполнонапорными нагнетателями.
По типу привода компрессорных машин КС бывают: станции с поршневыми газовыми двигателями; с приводом от ГТУ; с приводом от электродвигателей.
По количеству ступеней сжатия КС бывают с одно-, 2-х и 3-хступенчатым сжатием.
Обычно поршневые компрессоры приводятся поршневыми газовыми двигателями, которые с компрессорами образуют единый агрегат – газомотокомпрессор (ГМК). Газомотокомпрессоры ГМК используются на магистральных газопроводах с производительностью до 10 (15) млн м3/сут и широкого применения не находят. ГМК имеет степень сжатия более 2.
ЦБН приводятся либо ГТУ, либо электродвигателем с применением (или без) редуктора. Если нагнетатель имеет невысокую степень сжатия (1,25 – 1,35) они называются неполнонапорными, т.к. они не способны создать полный напор (полную степень сжатия) требуемой от КС в целом. Нагнетатели с достаточно высокой степенью сжатия (1,5 – 1,7) называют полнонапорными. В качестве турбопривода нагнетателей используется 4 разновидности ГТУ: стационарные ГТУ, ГТУ на основе авиационных двигателей, ГТУ на базе судовых двигателей, ГТУ импортной поставки. Единичная мощность ГПА находится в пределах 4-25 МВт.
Достоинства ГПА с турбоприводом:
1. отсутствие необходимости в доставке энергоносителя;
2. наличие экономичного способа регулирования режима работы ГПА изменением частоты оборотов ротора нагнетателя.
Недостатки:
1. низкий кпд (16–32%), менее 30% в большинстве случаев;
2. мощные системы смазки и охлаждения.
В качестве электропривода для нагнетателя используются синхронные электродвигатели марок СТД-4000, СТД-10000, СТД-12500.
Достоинства электродвигателей:
1. более высокий кпд (95%) чем у ГТУ;
2. меньшая пожароопасность;
3. лучшая податливость автоматизации;
4. упрощает технологическую схему КС;
5. меньшая площадь застройки КС;
6. независимость мощностей двигателей (при нормальной работе вспомогательных систем) от температуры окружающей среды в отличие от ГТУ.
Недостатки:
1. отсутствие экономичных способов регулирования режимов работы ГПА;
2. более высокая стоимость энергоносителя – электричества;
3. необходимость сооружения дорогостоящих ЛЭП и электрических подстанций не менее чем от 2-х независимых источников электроэнергии.
Пылеуловители (циклонные и масляные) и фильтры-сепараторы.
Ф
ильтры-сепараторы
устанавливают на КС по технико-экономическому
обоснованию. В основном очистку производят
в одну ступень в циклоныых пылеуловителях
(на КС с ГМК– масляные ПУ). Основной
элемент циклонного ПУ – циклон. Принцип
работы – газ закручивается в циклоне
и более тяжелые частицы и вода под
действием гравитационных силы оседают
на стенках и стекают в шламосборник. В
промышленности используются две марки
ПУ: ГП-106 и ГП-144. Эффективность очистки
газа в ПУ 95%. ПУ устанавливаются
параллельно.
где 1–циклонная головка;
2–вертикальный цилиндрический корпус.
При сжатии газа в нагнетателе происходит его нагрев, что влечет за собой ряд негативных моментов: может вызвать чрезмерное напряжение термического характера в трубопроводе; может привести к разрушению антикоррозионной изоляции трубы; нагрев газа может привести к растеплению многолетнемерзлых (и вечномерзлых) грунтов через которые проходит трасса газопровода.
Кроме того, транспорт газа с повышенной температурой не экономичен. Все это привело к необходимости охлаждения газа после его компримирования. На КС охлаждение проводят с помощью аппаратов воздушного охлаждения (АВО).
АВО включают в себя следующие основные узлы и агрегаты: секции оребренных труб различной длины (3-12 м), вентиляторы с электроприводом, диффузоры и жалюзи для регулировки производительности воздуха, несущие конструкции. Все применяемые АВО характеризуются коэффициентом оребрения =7,8-21.
Марки АВО: АВГ, АВЗ, «Крезо-Луар», Ничмен», «Хадсон».
АВО разделяются по числу секций (вентиляторов) на одно и двух секционные; по количеству ходов газа на одно и двух ходовые.
Запорная арматура трубопроводов КС представлена полнопроходными шаровыми кранами, обратными клапанами поворотного типа. Шаровые краны имеют гидропневмопривод с роторным или кулисным механизмом. Движущей силой является импульсный газ из газопровода (проходит спец. Подготовку).
К вспомогательному оборудованию КС относятся устройства, обеспечивающие работу основного оборудования. Это блок подготовки пускового, топливного и импульсного газа. Топливный газ подается в камеру сгорания ГТУ с нужным давлением, очищенный от примесей и подогретый до нужной температуры. Импульсный газ проходит очистку, осушку и хранится в специальном ресивере.
Кроме того, на КС может иметься система утилизации тепла выхлопных газов. Тепло используется в основном для теплоснабжения станции, ни возможны различные варианты использования.
На КС имеется также энергоподстанция с трансформатором, склад масла с насосной станцией и другие вспомогательные объекты.