
- •2. Перспективные направления развития трубопроводного транспорта.
- •3. Состав сооружений магистральных трубопроводов.
- •4. Выбор оптимальной трассы трубопровода.
- •5. Классификация нагрузок и воздействий на магистральный трубопровод.
- •2. Временные длительные:
- •6. Расчет трубопровода на прочность, деформации и устойчивость.
- •7. Очистка, испытание трубопроводов на прочность и проверка на герметичность.
- •8) Обеспечение устойчивости трубопроводов на подводных переходах, на болотистых и многолетнемерзлых грунтах
- •1. Горячие участки (температура всегда положительная);
- •9) Основные этапы внутритрубной диагностики трубопроводов
- •10. Переходы трубопроводов через водные преграды и классификация их по способу строительства.
- •11. Современные способы ремонта газонефтепроводов
- •12. Трубопроводы с переменной толщиной стенки.
- •14. Основное и вспомогательное оборудование нпс.
- •15. Характеристики основных и подпорныхнасосов нпс.
- •16. Совместная работа насосов и трубопроводной сети.
- •17. Расчёт внутриплощадочных трубопроводов.
- •18. Основное и вспомогательное оборудование кс
- •19. Технологические схемы кс. Технологическая схема кс с центробежными нагнетателями.
- •20. Подбор основного и вспомогательного оборудования кс. Подбор основного оборудования кс.
- •Подбор оборудования очистки газа.
- •21. Расчет внутриплощадочных трубопроводов кс.
- •22. Расчет режимов работы нпс и мн.
- •23. Способы увеличения пропускной способности нефтепровода.
- •24. Изменение подпоров перед станциями при изменении вязкости перекачиваемой нефти.
- •25. Нефтепроводы со сбросами и подкачками.
- •26. Режим работы нефтепровода при отключении насосных станций.
- •27.Способы регулирования работы насосных станций мн.
- •28. Состав объектов магистрального газопровода.
- •29. Температурный режим магистрального газопровода.
- •30. Технологический расчет газопроводов.
- •31. Увеличение производительности магистрального газопровода.
- •32. Режим работы газопровода при отключении кс или гпа.
- •33. Эксплуатация газопроводов с учетом скопления жидкости и образования гидратов.
- •34. Эксплуатация нефтепроводов при снижении производительности.
- •35. Эксплуатация мн с учетом отложения воды и парафинов.
- •36. Способы повышения эффективности работы магистральных газопроводов.
- •37. Техническое обслуживание оборудования кс и нс.
- •38. Диагностика технического состояния гпа
- •39.Технологический расчет магистральных нефтепроводов.
- •40. Уравнение баланса напоров. Определение числа нефтеперекачивающих станций.
- •41.Увеличение пропускной способности горячего нефтепровода.
- •42. Особые режимы работы «горячих» нефтепроводов.
- •43. Особенности технологии и преимущества последовательной перекачки нефтепродуктов.
- •44. Гидравлический расчет нефтепродуктопровода при последовательной перекачке.
- •45. Основные вопросы последовательной перекачки нефтепродуктов.
- •46. Прием и реализация смеси нефтепродуктов при последовательной перекачке нефтей и нефтепродуктов.
- •47. Мероприятия по уменьшению количества смеси при последовательной перекачке.
- •48. Режимы работы продуктопроводов при замещении нефтепродуктов.
- •49.Оптимальное число циклов при последовательной перекачке нефтепродуктов.
- •50. Способы перекачки высоковязких и высокозастывающих нефтей и нефтепродуктов.
- •51. Перекачка высоковязких ввн и высокозастывающих взн нефтей и н-продуктов с подогревом.
- •52.Тепловой расчет горячего нефтепровода.
- •53. Гидравлический расчет горячих нефтепроводов.
- •54. Характеристика q-h горячего нефтепровода
- •55. Системы сбора продукции нефтяных скважин.
- •В настоящее время известны следующие системы промыслового сбора продукции нефтяных скважин:
- •56. Системы сбора продукции газовых скважин.
- •57. Гидравлический расчёт промысловых нефтепроводов.
- •Число Рейнольдса для смеси определяется как
- •Кинематическая вязкость двухфазного потока определяется по формуле Манна:
- •Плотность газожидкостной смеси:
- •58. Дожимные насосные станции.
- •59. Технологические схемы установок подготовки газа.
- •60. Сепарация нефти и сепарация природного газа.
- •61. Оборудование установок подготовки нефти и газа к дальнему транспорту.
- •62. Особенности расчета нефтяных и газовых промысловых коллекторов.
- •63. Гидраты природных газов и методы борьбы с ними.
- •Методы борьбы с гидратообразованием.
- •64.Стабилизация нефти.
- •65. Подготовка газа и конденсата к транспорту.
- •66.Одоризация газа
- •67. Газораспределительные системы.
- •68. Технологические схемы и оборудование грс и грп.
- •69. Хранение природного газа.
- •70. Сжиженные углеводородные газы.
- •2. Удельный объем сжиженного газа (обратная величина плотности).
- •71. Хранение суг.
- •72. Технологические процессы и оборудование гнс.
- •73. Товарные нефтепродукты и основы их использования.
- •74. Насосные станции нефтебаз.
- •75. Назначение и категории нефтебаз.
- •76. Железнодорожные перевозки нефтепродуктов.
- •80.4 Межрельсовый желоб.
- •77. Водные перевозки нефтепродуктов и нефтей.
- •78. Автомобильные перевозки нефтепродуктов.
- •79.Генплан нефтебазы (перевалочной и распределительной).
- •80. Типы и конструкции резервуаров нефтебаз.
- •81.Оборудование резервуаров нефтебаз.
- •82. Принцип расчета нефтегазовых коллекторов.
- •83. График остаточных напоров сливного ж/д коллектора
- •85. Способы подогрева вязких нефтепродуктов на нефтебазах.
- •86. Потери нефти и нефтепродуктов на нефтебазах. Уменьшение потерь от «больших» и «малых» дыханий.
- •87. Автозаправочные станции.
12. Трубопроводы с переменной толщиной стенки.
Если толщина стенки будет переменной, изменяющейся в соответствии с давлением по длине, то для нефтепроводов может быть достигнута существенная экономия металла.
Поскольку различие между начальным и средним давлением невелико, газопроводы обычно не сооружают с переменной толщиной стенки.
Размещение труб с различными толщинами стенок по длине перегона называется раскладкой.
Толщина стенок труб определяется проектным давлением в трубопроводе, которое достигает 6,4—7,5 МПа.
В технологический расчет нефтепровода входит решение следующих основных вопросов: определение экономически наивыгоднейших параметров (диаметра трубопровода, давления на нефтеперекачивающих станциях, толщины стенки трубопровода и числа нефтеперекачивающих станций); определение местонахождения станций на трассе нефтепровода; расчет режимов эксплуатации нефтепровода.
При нескольких значениях диаметра выполняются гидравлический и механический расчеты, определяющие (для каждого варианта) число нефтеперекачивающих станций и толщину стенки трубопровода.
Параметрами нефтепровода, характеризующими его как с экономической, так и с технической стороны, являются диаметр трубопровода D, давление р, развиваемое насосными станциями, число нефтеперекачивающих станций п и толщина стенки трубопровода б (пропускная способность нефтепровода Q задается).
Толщина стенки трубопровода при выбранной марке стали определяется величинами р и D.
Так, оптимальное давление может оказаться ниже того, которое развивают выпускаемые заводами насосы, а оптимальная толщина стенки трубопровода — меньше предельно допустимой.
С увеличением давления уменьшается диаметр трубопровода и число перекачивающих станций, а также возрастает толщина стенки трубопровода;
С увеличением диаметра трубопровода относительная толщина стенки, давление и число станций уменьшаются.
Для участков, где давления нагнетания значительно отличаются от расчетного, необходимо уточнить (вновь определить) толщину стенки трубопровода.
13. Технологические схемы головной и промежуточной НПС.
Технологической схемой НПС называют внемасштабный рисунок, на котором представлена принципиальная схема работы НПС в виде системы внутристанционных коммуникаций (трубопроводов) с установленным на них основными вспомогательным оборудованием, а также с указанием диаметров и направлений потоков.
Технологическая схема ГНПС нефтепровода.
П
оскольку
ГНПС нефтепровода и эксплуатационного
участка имеет одинаковый состав
технологических объектов технологические
схемы их одинаковы. Существуют лишь
незначительные расхождения.
Со входа станции нефть или нефтепродукт направляется в резервуарный парк, при этом проходит фильтры-грязеуловители, УП (узел предохранительных устройств) и узел учета (УУ).
УП для защиты входных коммуникаций и установленного на них технологического оборудования от чрезмерного давления. Защита осуществляется путем сброса части жидкости из входных коммуникаций в резервуарный парк. Сброс осуществляется с помощью предохранительных клапанов типа ППК (пружинный полноподьёмный предохранительный клапан) или СППК (специальный пружинный полноподьёмный предохранительный клапан). Рассчитывается необходимое количество клапанов. В дополнение к ним принимаются резервные в размере 30-50%. Все клапана соединяются параллельно. На входе и выходе каждого из них устанавливается задвижка с ручным приводом. Задвижки опломбируются в открытом состоянии. Для приёма сброса из узла предохранительных устройств в резервуарный парк обязательно предусматривается не менее двух резервуаров в которых постоянно поддерживается свободная ёмкость равная двух часовой производительности ГНПС. На выходе УП на линии сброса обязательно устанавливается обратный клапан.
Узел учёта служит для измерения количества нефти поступающей на ГНПС. Основное назначение его на ГНПС нефтепровода коммерческий учёт, а на ГНПС участка – контроль за процессом перекачки.
Основным элементом узла учёта является расходомер турбинного типа (например расходомер типа Турбоквант). Они способны обеспечивать измерение расхода, достаточно высокую и гарантированную точность лишь для некоторого достаточно узкого диапазона Q. При магистральном транспорте нефти производительность перекачки может изменяться в широком диапазоне. Для обеспечения измерениям расхода достаточно высокой и гарантированной точности при любой производительности трубопровода на узлах учёта устанавливаются несколько параллельно соединённых расходомеров. В работу включается в каждом конкретном случае такое количество, при котором каждый работающий расходомер будет эксплуатироваться в своей рабочей зоне. Для обеспечения качественного учёта нефти расходомеры устанавливаются на измерительных линиях. Струевыпрямитель предназначен для успокоения потока после фильтра. Это труба равная по диаметру трубе измерительной линии. В неё помещается пакет из труб меньшего диаметра в количестве не менее 4 штук. Требуемое количество расходомеров рассчитывается исходя из характеристик расходомера и производительности трубопровода исходя из этого условия измерение расхода должно осуществляться с требуемой точностью при измерении производительности нефтепровода от 30% до 100% её проектного значения. В дополнение к ним принимается 30% резервных линий и одна контрольная линия на которой размещается контрольный расходомер предназначен для периодического контроля показаний рабочего расходомера для этого на технологической схеме узла учёта предусматривается обвязка позволяющая последовательно соединять любую измерительную линию последовательно с контрольной. Типоразмер расходомера ищется так, чтобы число измерительных линий в целом не превышало 10. рассмотренная технологическая схема имеет узел учёта ГНПС эксплуатационного участка. На узле учёта ГНПС нефтепровода дополнительно предусматривается турбопоршневая установка с помощью которой более точно контролируются показания рабочих расходомеров
Резервуарный парк принимается ёмкостью равной двух, трёх суточной производительности нефтепровода, ГНПС эксплуатационного участка 0,3-0,5 проектной производительности магистрали. Согласно норм технологического проектирования для резервуарных парко ГНПС допускается использовать только резервуары с понтоном или с плавающей крышей. Как исключение при соответствующем технико-экономическом обосновании предусматривается применять и резервуары со стационарной крышей.
Из РП нефть подается в магистральный нефтепровод посредством насосов подпорной НС (ПНС) и насосов основной (ОНС), при этом между ПНС и ОНС расположены по второму узлу предохранительных устройств и учета.
На основной НС выполненной по типовой технологической схеме предусматривается последовательное соединение насосов. Исходя из этого, основные насосы подбираются по производительности ГНПС или нефтепровода. Таким образом, устанавливается требуемый типоразмер насосов. Необходимое количество насосов определяется исходя из напора, выбранного типоразмера насоса и напора требуемого для ГНПС (основная НС). Основных насосов не должно превышать двух при напоре насосов до 360м3/ч и трёх для насосов других более высоких производительностей.
Н
а
выходе ОНС располагаются узел регулирования
давления (УР), который предназначен для
регулирования режима работы ГНПС
нефтепровода методом дросселирования.
Подача нефти в магистраль осуществляется
через узел подключения ГНПС к магистрали
(УПМ).
Технологическая схема ПНПС.
Современный уровень развития техники не позволяет получать на выходе из основной НС значительных напоров, достаточных для транспорта нефти до конечного пункта магистрали. Это вызывает необходимость в периодической энергетической подпитке потока по ходу его следования. Такая подпитка осуществляется с помощью ПНПС, которые располагаются по трассе магистрали.
ПНПС подключается к магистрали посредством узла подключения к магистрали УМ. Далее нефть поступает непосредственно на вход насосов ПНПС идентичной ОНС ГНПС. При этом нефть перед насосами проходит площадку фильтров-грязеуловителей ФГ и иногда систему сглаживания волн давления ССВД. После насосов нефть проходит узел регулирования давления УР, подобному на ГНПС, и через УМ возвращается в нефтепровод.
Фильтры – грязеуловители представляют конструкцию типа труба в трубе. Внутренний элемент представляет собой заглушенную трубу перфорированную по боковой поверхности. Очистка осуществляется за счёт двух эффектов: торможение потоков на входе в фильтр; ограниченность размеров перфорации. Такие фильтры позволяют избавится лишь от крупных механических включений. Для очистки фильтра используется люк. В типовом варианте используют 3 фильтра соединённых параллельно.
На нефтепроводе диаметром 720 мм и выше предусматривается установка на ПНПС системы сглаживания волн давления, которая предназначена для гашения ударной волны (гидроудара) возникающих при любых остановках насосно-силовых агрегатов. С отключением насосных агрегатов (полной или частичной) интенсивность подачи нефти в следующий участок магистрали снижается, но она сохраняется прежней на предшествующем участке, т.к. режим предшествующих станций не изменяется. В итоге на входе в ПНПС, где происходит отключение агрегатов наблюдается сжатие жидкости с резким поднятием давления до 20 атм. за несколько секунд. Такой рост давления называется гидроударом и представляет серьёзную опасность, поэтому возникает необходимость гашения гидроудара на входе в ПНПС. В качестве ССВД в настоящее время используется установка АРКРОН (США) в её основе малоинерционные клапаны ФлексФло. Сглаживание гидроудара или гидроударной волны осуществляется сбросом части нефти со входа НС ПНПС через клапаны ФлексФло в буферную ёмкость Е.
В типовой комплектации в АРКРОН входит 6 параллельно соединённых клапанов ФлексФло. Необходимость установки АРКРОН на ПНПС нефтепроводов заранее отмеченных диаметров обоснуется расчётом (на стадии проектирования станции). В ходе эксплуатации происходит изменение характеристик насосных агрегатов. Линейная часть стареет и периодически реконструируется, что изменяет ситуацию, поэтому в ходе эксплуатации нефтепровода требуется повторять соответствующие расчёты и в соответствии с ними прикрывать или приоткрывать дроссель, т.е. проводить перенастройку АРКРОН.
Т
ехнологическая
схема ДНС.
ДНС применяются на промыслах, занимающих значительные площади, когда пластового давления бывает недостаточно для перемещения нефти из скважин под собственным давлением до установок подготовки нефти. Также ДНС используются на месторождениях, где пластовое давление невысоко.
На ДНС имеется две технологические цепочки: при нормальной работе станции задействована верхняя цепочка. От скважин продукция (содержащая воду, нефть, свободный и растворенный газы, а также твердые включения) направляется первоначально в сепаратор С-1 (где при давлении 0,3-0,7 МПа от продукции отделяется весь свободный газ и направляется во внутрипромысловый газопровод). 2-хфазная смесь (вода, нефть и твердые включения) направляется на вход НС через буферную емкость БЕ. НС подает нефть во внутрипромысловый коллектор.
При аварии на ДНС или нефтесборном коллекторе поток от скважин направляется в нижнюю технологическую цепочку и поступает первоначально в концевую сепарационную установку КСУ (где полностью дегазируется при давлении примерно 0,102 МПа). Газ направляется на факел, где сжигается. Разгазированная продукция поступает в аварийную емкость АЕ. После ликвидации аварий первоначально производится откачка нефти из АЕ, а затем возобновляется нормальный режим работы.