
- •2. Законы раздражения возбудимых тканей
- •3. Понятие о состоянии покоя и активности возбудимых тканей
- •4. Физико-химические механизмы возникновения потенциала покоя
- •5. Физико-химические механизмы возникновения потенциала действия
- •Локальный ответ
- •Высоковольтный пиковый потенциал (спайк)
- •Скелетные мышцы, их строение и функции
- •Суммация
- •Амортизирующие сосуды[править | править исходный текст]
- •Сосуды распределения[править | править исходный текст]
- •Сосуды сопротивления[править | править исходный текст]
- •Обменные сосуды (капилляры)[править | править исходный текст]
- •Шунтирующие сосуды[править | править исходный текст]
- •Емкостные (аккумулирующие) сосуды[править | править исходный текст]
- •Сосуды возврата крови в сердце[править | править исходный текст]
- •Физиология параметров, измеряемых сфигмоманометрическими приборами[править | править исходный текст]
- •Артериальный пульс[править | править исходный текст]
- •Пальпация[править | править исходный текст]
- •Движение крови в капиллярах. Микроциркуляция
- •Кровяное депо
- •Сосудодвигательный центр
- •Рефлексогенные зоны
- •Причины физиологического лейкоцитоза[править | править исходный текст]
- •Сосудисто-тромбоцитарный гемостаз
- •Регуляция фибринолиза[править | править исходный текст]
- •Рефлекторная регуляция деятельности сердца
- •Законы работы сердца
- •Закон Франка-Старлинга
- •Феномен Анрепа
- •Лестница Боудича
- •Состав вдыхаемого, выдыхаемого и альвеолярного воздуха
- •Строение легких.
- •Регуляции дыхания Центральными (медуллярными) хеморецепторами
- •Рефлекторная регуляция дыхания
- •Содержание газов (в процентах)
- •Недыхательные функции легких
- •Защитные функции дыхательной системы
- •Пищеварение и его значение
- •Типы пищеварения
- •Конвейерный принцип организации пищеварения
- •Гнатодинамометрия
- •Пищеварение в тонкой кишке Полостное и пристеночное пищеварение в тонкой кишке
- •Моторная функция тонкой кишки
- •Моторная активность тонкой кишки[править | править исходный текст]
- •Перистальтические волны[править | править исходный текст]
- •Ретроградная перистальтика[править | править исходный текст]
- •Ритмическая сегментация[править | править исходный текст]
- •Маятникообразные сокращения[править | править исходный текст]
- •Тонические сокращения[править | править исходный текст]
- •Мигрирующий моторный комплекс[править | править исходный текст]
- •Регуляция моторики тонкой кишки[править | править исходный текст]
- •Функции толстой кишки Дефекация
- •Жиры (липиды) - органические соединения состоящие из глицерина и жирных кислот.
- •Обмен углеводов
- •Витамин а (каротин, ретинол)
- •Содержание витамина а в продуктах:
- •Содержание каротина в продуктах:
- •Витамин в1 (тиамин)
- •Содержание витамина в1 в продуктах:
- •Витамин в2 (рибофлавин)
- •Содержание витамина в2 в продуктах:
- •Витамин в6 (пиридоксин)
- •Содержание витамина в6 в продуктах:
- •Витамин в12 (цианкобаламин)
- •Содержание витамина в12 в продуктах:
- •Фолиевая кислота
- •Содержание фолиевой кислоты в продуктах:
- •Витамин d, d2, d3 (кальциферол, эргокальциферол, эргостерол)
- •Содержание витамина d в продуктах:
- •Витамин е (токоферол)
- •Содержание витамина е в продуктах:
- •Витамин н (биотин)
- •Содержание витамина н (биотина) в продуктах:
- •Витамин к (викасол)
- •Содержание витамина к в продуктах:
- •Витамин с (аскорбиновая кислота)
- •Содержание витамина с в растительных продуктах:
- •Витамин р (биофлавоноиды, рутин)
- •Содержание витамина р в растительных продуктах:
- •Витамин рр (никотинамид)
- •Содержание витамина рр в продуктах:
- •Витамин в5 (пантотеновая кислота, пантенол)
- •Содержание витамина в 5 в продуктах:
- •Витамин в15 (пангамовая кислота)
- •Содержание витамина в15 в продуктах:
- •Витамин f (жирные кислоты)
- •Химическая терморегуляция
- •Физическая терморегуляция
- •Зависимость температуры тела человека от места измерения[править | править исходный текст]
- •Химическая терморегуляция
- •Физическая терморегуляция
- •Гипофиз
- •Гормоны гипофиза.
- •Гормоны щитовидной железы
- •Содержание
- •Гландулярная эндокринная система[править | править исходный текст]
- •Агландулярная эндокринная система[править | править исходный текст]
- •Биохимия[править | править исходный текст]
- •Гормоны щитовидной железы
- •См. Также[править | править исходный текст]
- •Примечания[править | править исходный текст]
- •Гормоны надпочечников: мозговое вещество
- •Гормоны надпочечников: корковое вещество
- •Гормоны надпочечников, выделяемые сетчатой зоной
- •Гормоны поджелудочной железы
- •Процесс мочеобразования
- •Продолговатый мозг
- •Функции продолговатого мозга[править | править исходный текст]
- •Средний мозг
- •Функции среднего мозга[править | править исходный текст]
- •Промежуточный мозг
- •Эпиталамус[править | править исходный текст]
- •Метаталамус[править | править исходный текст]
- •Гипоталамус[править | править исходный текст]
- •Третий желудочек[править | править исходный текст]
- •Функции промежуточного мозга[править | править исходный текст]
- •Мозжечок
- •Виды боли
- •Механизм боли
- •Проводящие пути болевой чувствительности
- •Передний и латеральный спино-таламические пути
- •Пути вдоль латерального спино-ретикулярного тракта из спинного в головной мозг
- •Пути вдоль латерального спино-мезэнцефалического тракта
- •Пути вдоль латерального спино-цервикального тракта из спинного в головной мозг
- •Антиноцицептивная система
- •Патологическая боль
- •Теории патологической боли
- •Патологические болевые синдромы
- •Особые виды боли
- •13.Строение и функции слухового анализатора. Восприятие звука. Понятие амплитудного максимума, микрофонного и суммационного потенциалов. С помощью слухового анализатора человек…
Движение крови в капиллярах. Микроциркуляция
Капилляры представляют собой тончайшие сосуды, диаметром 5—7 мкм, длиной 0,5—1,1 мм. Эти сосуды пролегают в межклеточных пространствах, тесно соприкасаясь с клетками органов и тканей организма. Суммарная длина всех капилляров тела человека составляет около 100 000 км, т. е. нить, которой можно было бы 3 раза опоясать земной шар по экватору. Физиологическое значение капилляров состоит в том, что через их стенки осуществляется обмен веществ между кровью и тканями. Стенки капилляров образованы только одним слоем клеток эндотелия, снаружи которого находится тонкая соединительнотканная базальная мембрана.
Скорость кровотока в капиллярах невелика и составляет 0,5— 1 мм/с. Таким образом, каждая частица крови находится в капилляре примерно 1 с. Небольшая толщина слоя крови (7—8 мкм) и тесный контакт его с клетками органов и тканей, а также непрерывная смена крови в капиллярах обеспечивают возможность обмена веществ между кровью и тканевой (межклеточной) жидкостью.
В тканях, отличающихся интенсивным обменом веществ, число капилляров на 1 мм2 поперечного сечения больше, чем в тканях, в которых обмен веществ менее интенсивный. Так, в сердце на 1 мм2 сечения в 2 раза больше капилляров, чем в скелетной мышце. В сером веществе мозга, где много клеточных элементов, капиллярная сеть значительно более густая, чем в белом.
Различают два вида функционирующих капилляров. Одни из них образуют кратчайший путь между артериолами и венулами (магистральные капилляры). Другие представляют собой боковые ответвления от первых: они отходят от артериального конца магистральных капилляров и впадают в их венозный конец. Эти боковые ответвления образуют капиллярные сети. Объемная и линейная скорость кровотока в магистральных капиллярах больше, чем в боковых ответвлениях. Магистральные капилляры играют важную роль в распределении крови в капиллярных сетях и в других феноменах микроциркуляции.
Давление крови в капиллярах измеряют прямым способом: под контролем бинокулярного микроскопа в капилляр вводят тончайшую канюлю, соединенную с электроманометром. У человека давление на артериальном конце капилляра равно 32 мм рт.ст., а на венозном — 15 мм рт.ст., на вершине петли капилляра ногтевого ложа — 24 мм рт.ст. В капиллярах почечных клубочков давление достигает 65— 70 мм рт.ст., а в капиллярах, оплетающих почечные канальцы, — всего 14—18 мм рт.ст. Очень невелико давление в капиллярах легких — в среднем 6 мм рт.ст. Измерение капиллярного давления производят в положении тела, при котором капилляры исследуемой области находятся на одном уровне с сердцем. В случае расширения артериол давление в капиллярах повышается, а при сужении понижается.
Кровь течет лишь в «дежурных» капиллярах. Часть капилляров выключена из кровообращения. В период интенсивной деятельности органов (например, при сокращении мышц или секреторной активности желез), когда обмен веществ в них усиливается, количество функционирующих капилляров значительно возрастает.
Регулирование капиллярного кровообращения нервной системой, влияние на него физиологически активных веществ — гормонов и метаболитов — осуществляются при воздействии их на артерии и артериолы. Сужение или расширение артерий и артериол изменяет как количество функционирующих капилляров, распределение крови в ветвящейся капиллярной сети, так и состав крови, протекающей по капиллярам, т. е. соотношение эритроцитов и плазмы. При этом общий кровоток через метартериолы и капилляры определяется сокращением гладких мышечных клеток артериол, а степень сокращения прекапиллярных сфинктеров (гладких мышечных клеток, расположенных у устья капилляра при его отхождении от метаартериол) определяет, какая часть крови пройдет через истинные капилляры.
В некоторых участках тела, например в коже, легких и почках, имеются непосредственные соединения артериол и венул — артериовенозные анастомозы. Это наиболее короткий путь между артериолами и венулами. В обычных условиях анастомозы закрыты и кровь проходит через капиллярную сеть. Если анастомозы открываются, то часть крови может поступать в вены, минуя капилляры.
Артериовенозные анастомозы играют роль шунтов, регулирующих капиллярное кровообращение. Примером этого является изменение капиллярного кровообращения в коже при повышении (свыше 35°С) или понижении (ниже 15°С) температуры окружающей среды. Анастомозы в коже открываются и устанавливается ток крови из артериол непосредственно в вены, что играет большую роль в процессах терморегуляции.
Структурной и функциональной единицей кровотока в мелких сосудах является сосудистый модуль — относительно обособленный в гемодинамическом отношении комплекс микрососудов, снабжающий кровью определенную клеточную популяцию органа. При этом имеет место специфичность васкуляризации тканей различных органов, что проявляется в особенностях ветвления микрососудов, плотности капилляризации тканей и др. Наличие модулей позволяет регулировать локальный кровоток в отдельных микроучастках тканей.
Микроциркуляция — собирательное понятие. Оно объединяет механизмы кровотока в мелких сосудах и теснейшим образом связанный с кровотоком обмен жидкостью и растворенными в ней газами и веществами между сосудами и тканевой жидкостью.
Специального рассмотрения заслуживают процессы обмена между кровью и тканевой жидкостью. Через сосудистую систему за сутки проходит 8000—9000 л крови. Через стенку капилляров профильтровывается около 20 л жидкости и 18 л реабсорбируется в кровь. По лимфатическим сосудам оттекает около 2 л жидкости. Закономерности, обусловливающие обмен жидкости между капиллярами и тканевыми пространствами, были описаны Стерлингом. Гидростатическое давление крови в капиллярах (Ргк) является основной силой, направленной на перемещение жидкости из капилляров в ткани. Основной силой, удерживающей жидкость в капиллярном русле, является онкотическое давление плазмы в капилляре (Рок). Определенную роль играют также гидростатическое давление (Ргт) и онкотическое давление тканевой жидкости (Рот)
На артериальном конце капилляра Ргк составляет 30—35 мм рт.ст., а на венозном — 15—20 мм рт.ст. Рок на всем протяжении остается относительно постоянным и составляет 25 мм рт.ст. Таким образом, на артериальном конце капилляра осуществляется процесс фильтрации — выхода жидкости, а на венозном — обратный процесс — реабсорбция жидкости. Определенные коррективы вносит в этот процесс Рот, равное примерно 4,5 мм рт.ст., которое удерживает жидкость в тканевых пространствах, а также отрицательная величина Ргт (-3—9 мм рт.ст.).
Следовательно, объем жидкости, переходящей через стенку капилляра за одну минуту (V), при коэффициенте фильтрации К равен:
V=(Ргк + Рот + Ргт - Рок)*К.
На артериальном конце капилляра V положителен, здесь происходит фильтрация жидкости в ткань, а на венозном — V отрицателен и жидкость реабсорбируется в кровь. Транспорт электролитов и низкомолекулярных веществ, например глюкозы, осуществляется вместе с водой.
Капилляры различных органов отличаются по своей ультраструктуре, а следовательно, по способности пропускать в тканевую жидкость белки. Так, 1 л лимфы в печени содержит 60 г белка, в миокарде — 30 г, в мышцах — 20 г и в коже — 10 г. Белок, проникший в тканевую жидкость, с лимфой возвращается в кровь.
12.Время кругооборота крови. Минутный объем крови. Линейная скорость кровотока.
13.Иннервация сосудов. Роль симпатической и парасимпатической нервных систем.
Кровеносные сосуды постоянно находятся в состоянии тонического сокращения. Тонус мелких артерий и артериол определяет величину их просвета и тем самым уровень кровяного давления и кровоснабжения отдельных органов. Тонус сосудов регулируется нейрогуморальным путем.
Сосуды иннервируются двумя видами нервов - сосудосуживающими и сосудорасширяющими, центры которых расположены в продолговатом и спинном мозге. Главный сосудодвигательный центр продолговатого мозга состоит из двух отделов: сосудосуживающего (прессорного) и сосудорасширяющего (депрессорного). Сосудосуживающий центр находится в состоянии постоянного тонуса, от него непрерывно идут импульсы к мышцам сосудов, поддерживающие их в состоянии длительного сокращения. Сосудосуживающие нервы относятся к симпатической нервной системе. Их влияние можно наблюдать в классическом опыте Клода Бернара на ухе белого кролика. Если перерезать - симпатический нерв, иннервирующий ухо, то оно краснеет и становится теплым, т. е. сосуды расширяются. Раздражение периферического конца перерезанного симпатического нерва вызывает сужение сосудов.
Второй, сосудорасширяющий, центр продолговатого мозга оказывает влияние на сосуды путем торможения сосудосуживающего центра. При этом поток импульсов к сосудам уменьшается и они расширяются. Таким образом, основную роль в регуляции просвета сосудов играет прессорный центр.
Гуморальные агенты могут вызывать как сужение, так и расширение сосудов. К сосудосуживающим веществам относятся адреналин, норадреналин, вазопрессин (гормон задней доли гипофиза), серотонин (образующийся в головном мозге и слизистой оболочке кишечника). Расширение сосудов вызывают метаболиты - угольная и молочная кислоты и медиатор ацетилхолин. Расширяет артериолы и увеличивает наполнение капилляров гистамин, образующийся в стенках желудка и кишечника, в коже при ее раздражении, в работающих мышцах.
14.Кровяное депо. Их физиологическая роль.