
- •Лекція вступ
- •32 Г (1 моль) — х л
- •1.2. Хімічний елемент
- •1.3. Основні закони хімії
- •2.1. Періодичний закон і періодична система хімічних елементів д. І. Менделеєва
- •2.1.2. Періодична система елементів
- •2.1.3. Розвиток періодичного закону
- •2.2.2. Характеристика орбіталей
- •2.2.3. Електронні формули
- •2.2.4. Властивості та енергетичні характеристики атомів
- •2.3.2. Ковалентний зв’язок
- •2.3.3. Йонний зв’язок
- •2.3.4. Водневий зв’язок
- •2.3.5. Металічний зв’язок
- •2.3.6. Взаємодія між молекулами
- •2.3.7. Комплексний зв’язок
- •3.1. Енергетика хімічних процесів
- •3.1.3. Ентропія, енергія Гіббса та напрямленість процесів
- •3.2.2. Фактори, що впливають на швидкість реакції
- •3.2.3. Каталіз
- •3.3.2. Хімічна рівновага
- •3.3.3. Принцип Ле Шательє
- •4.1. Розчини. Дисперсні системи
- •4.1.2. Розчини. Розчинність
- •4.1.3. Чисельне вираження складу розчинів
- •4.2.2. Дисоціація води. Водневий показник
- •4.2.3. Буферні розчини
- •4.2.4. Гідроліз солей
- •4.3.2. Ступінь окиснення
- •4.3.3. Теорія окисно-відновних реакцій
- •4.3.4. Найголовніші окисники і відновники
- •4.3.5. Класифікація окисно-відновних реакцій
- •4.3.6. Складання рівнянь окисно-відновних реакцій
- •4.4.2. Електродні потенціали
- •4.4.3. Ряд електрохімічних потенціалів металів
- •4.4.4. Електроліз
- •4.4.5. Корозія та захист металів
- •5.1. Основні класи неорганічних сполук
- •5.1.2. Оксиди
- •5.1.3. Основи
- •5.1.4. Кислоти
- •5.1.5. Амфотерні гідроксиди
- •5.1.7. Солеподібні бінарні сполуки
- •5.1.8. Галоген- і тіоангідриди
- •5.1.9. Металоїди (інтерметалоїди)
- •5.2.1. Місце металічних елементів у періодичній системі. Загальна характеристика металів
- •5.2.2. Фізичні та хімічні властивості металів
- •5.2.3. Характеристика й екологічна значимість окремих представників металічних елементів і їх сполук
- •5.2.1. Місце металічних елементів у періодичній системі. Загальна характеристика металів
- •5.2.2. Фізичні та хімічні властивості металів
- •5.2.3. Характеристика й екологічна значимість окремих представників металічних елементів і їх сполук
- •5.3.1. Місце неметалічних елементів у періодичній системі. Загальна характеристика неметалів
- •5.3.2. Фізичні та хімічні властивості неметалів
- •5.3.3. Характеристика й екологічна значимість окремих представників неметалічних елементів і їх сполук
- •5.3.1. Місце неметалічних елементів у періодичній системі. Загальна характеристика неметалів
- •5.3.2. Фізичні та хімічні властивості неметалів
- •5.3.3. Характеристика й екологічна значимість окремих представників неметалічних елементів і їх сполук
- •5.4.1. Класифікація органічних сполук
- •5.4.2. Характеристика найбільш екологічно значущих органічних сполук
- •5.4.3. Органічні полімерні матеріали
- •5.4.1. Класифікація органічних сполук
- •5.4.2. Характеристика найбільш екологічно значущих органічних сполук
- •5.4.3. Органічні полімерні матеріали
- •6.1. Ядерна хімія і радіохімія
- •6.1.2. Ядерні реакції
- •6.1.3. Вплив радіоактивності на біологічні об’єкти
- •6.2.1. Причини утворення і екологічні наслідки озонових дір, парникового ефекту, смогів, кислотних дощів
- •6.2.2. Чинники, що впливають на хімічний склад природних вод
- •6.2.3. Хімічне забруднення грунтів
- •6.2.1. Причини утворення і екологічні наслідки озонових дір, парникового ефекту, смогів, кислотних дощів
- •6.2.2. Чинники, що впливають на хімічний склад природних вод
- •6.2.3. Хімічне забруднення грунтів
2.1.2. Періодична система елементів
Періодична система хімічних елементів — це конкретизований (табличний) вираз періодичного закону. Відомо багато варіантів періодичної системи.
Сучасний варіант періодичної системи елементів Д. І. Менделєєва ми вже зустрічали, але часто користуються так званим «довгоперіодним» варіантом, в якому великі періоди не поділяються на парний і непарний ряди, а записуються в один ряд.
Слід зазначити, що менделєєвський варіант періодичної системи, який виявився найбільш довговічним і досконалим, включав не тільки відомі елементи, а й ті, що ще мали бути відкриті в майбутньому.
Існує дві основні структурні одиниці періодичної системи: період і група. Період — це ряд хімічних елементів, розміщених за зростанням їхніх протонних чисел і який розпочинається з лужного металу (перший період — з Гідрогену) і закінчується інертним газом. Є сім періодів: один найменший (він складається з двох елементів — Гідрогену і Гелію), два малих (по вісім елементів), два великих (по вісімнадцять елементів), шостий період найбільший (32 елементи), а останній період— незакінчений.
У періодах простежується поступове послаблення металічних властивостей елементів і наростання неметалічних з переходом до інертних газів, що наочно можна показати на прикладі елементів другого періоду. Період розпочинається з Літію — одновалентного елемента з властивостями металу, що енергійно розкладає воду з утворенням лугу та водню. За Літієм розміщений Берилій — двовалентний елемент з властивостями металу, що повільно розкладає воду за звичайної температури. За Берилієм іде Бор — тривалентний елемент із слабко вираженими неметалічними властивостями, а далі розміщуються Карбон — чотиривалентний неметал, Нітроген — елемент з досить різко вираженими неметалічними властивостями, Оксиген — типовий неметал, Флуор найактивніший з неметалів. Період закінчується інертним газом — Неоном.
Порівнюючи елементи великих періодів, можна помітити деяку непослідовність зміни їхніх властивостей: спочатку їхні металічні властивості послаблюються, потім дещо наростають і знову послаблюються з переходом до елементів неметалічної природи. Так, у п'ятому періоді металічні властивості, які різко виявлені в Рубідію, послаблюються від елемента до елемента і найпасивніші метали цього періоду — Рутеній, Родій, Паладій за пасивністю нагадують інертні елементи. Елементи цього періоду, що розміщені за Паладієм (Аргентум, Кадмій, Індій, Станум тощо), виявляють вищу металічну активність; від Кадмію до Телуру металічні властивості елементів значно послаблюються; Телур — неметал, Йод — активний неметал, період закінчується інертним газом Ксеноном.
Отже, п'ятий період (як і всі великі періоди) поділяється на два ряди: один починається з Рубідію і закінчується Паладієм, інший починається з Аргентуму і закінчується інертним газом — Ксеноном. Причому у другому ряду чіткіше, ніж у першому, виявляється поступовий перехід від металу через неметали до інертного газу.
Другою важливою структурною одиницею періодичної системи є група — ряд (вертикальний стовпчик) подібних елементів, що належать до різних періодів. Кожна група є ніби природною родиною елементів. Всього в періодичній системі є вісім груп елементів.
До кожної групи входять по одному елементу з малих періодів, по два елементи — з великих, оскільки великий період складається з двох рядів, і з кожного з них до тієї чи іншої групи повинен входити один елемент. Кожна група складається з двох підгруп: головної і побічної. Це можна пояснити і им, що елементи, які входять до даної групи з двох рядів (парного і непарного) одного й того самого періоду, не цілком подібні за своїми властивостями.
До головної підгрупи належать типові елементи (Д. І. Менделєєв називав типовими елементи малих періодів) і подібні до них елементи великих періодів. Решта елементів даної групи належить до побічної підгрупи. Так, до головної підгрупи першої групи належать типові елементи — Літій, Натрій і подібні до них Калій, Рубідій, Цезій, Францій (всі вони є лужними металами); до побічної підгрупи першої групи належать Купрум, Аргентум, Аурум.
Крім груп і підгруп у періодичній системі є ряди подібних елементів, які розміщені в одній і тій самій групі і в одному періоді (за винятком платинових металів). Ці ряди елементів називаються родинами. Так, до родини Феруму належать Ферум, Кобальт і Нікол; до родини платинових металів входять шість елементів (Ru, Rh, Рd, Оs, Іr, Рt); до родини лантаноїдів — елементи з протонними числами 57—71, які дуже подібні між собою, родина актиноїдів містить чотирнадцять елементів з протонними числами 90—103, що йдуть за Актинієм і дуже подібні між собою за властивостями.
Лантаноїди та актиноїди здебільшого виносять у самостійні ряди, які розміщують унизу періодичної таблиці елементів.
Встановлюючи місце елемента в періодичній таблиці, Д. І. Менделєєв керувався всією сукупністю його властивостей. Хоч у своїх працях він прямо не говорив про порядковий номер як фундаментальну характеристику хімічного елемента, але це відчувалось у кожній його праці, де йшлося про періодичний закон. Пізніші дослідження показали, шо розміщення Д. І. Менделєєвим елементів у періодичній системі є правильним і відповідає будові їхніх атомів.
Отже, в періодичній системі властивості елементів, їхні атомні маси, валентність, хімічний характер змінюються як у групах, так і в періодах у певній послідовності. Знаючи положення елемента в таблиці, можна досить точно визначити його властивості, оскільки місце елемента в таблиці визначається його властивостями.