
- •Лекція вступ
- •32 Г (1 моль) — х л
- •1.2. Хімічний елемент
- •1.3. Основні закони хімії
- •2.1. Періодичний закон і періодична система хімічних елементів д. І. Менделеєва
- •2.1.2. Періодична система елементів
- •2.1.3. Розвиток періодичного закону
- •2.2.2. Характеристика орбіталей
- •2.2.3. Електронні формули
- •2.2.4. Властивості та енергетичні характеристики атомів
- •2.3.2. Ковалентний зв’язок
- •2.3.3. Йонний зв’язок
- •2.3.4. Водневий зв’язок
- •2.3.5. Металічний зв’язок
- •2.3.6. Взаємодія між молекулами
- •2.3.7. Комплексний зв’язок
- •3.1. Енергетика хімічних процесів
- •3.1.3. Ентропія, енергія Гіббса та напрямленість процесів
- •3.2.2. Фактори, що впливають на швидкість реакції
- •3.2.3. Каталіз
- •3.3.2. Хімічна рівновага
- •3.3.3. Принцип Ле Шательє
- •4.1. Розчини. Дисперсні системи
- •4.1.2. Розчини. Розчинність
- •4.1.3. Чисельне вираження складу розчинів
- •4.2.2. Дисоціація води. Водневий показник
- •4.2.3. Буферні розчини
- •4.2.4. Гідроліз солей
- •4.3.2. Ступінь окиснення
- •4.3.3. Теорія окисно-відновних реакцій
- •4.3.4. Найголовніші окисники і відновники
- •4.3.5. Класифікація окисно-відновних реакцій
- •4.3.6. Складання рівнянь окисно-відновних реакцій
- •4.4.2. Електродні потенціали
- •4.4.3. Ряд електрохімічних потенціалів металів
- •4.4.4. Електроліз
- •4.4.5. Корозія та захист металів
- •5.1. Основні класи неорганічних сполук
- •5.1.2. Оксиди
- •5.1.3. Основи
- •5.1.4. Кислоти
- •5.1.5. Амфотерні гідроксиди
- •5.1.7. Солеподібні бінарні сполуки
- •5.1.8. Галоген- і тіоангідриди
- •5.1.9. Металоїди (інтерметалоїди)
- •5.2.1. Місце металічних елементів у періодичній системі. Загальна характеристика металів
- •5.2.2. Фізичні та хімічні властивості металів
- •5.2.3. Характеристика й екологічна значимість окремих представників металічних елементів і їх сполук
- •5.2.1. Місце металічних елементів у періодичній системі. Загальна характеристика металів
- •5.2.2. Фізичні та хімічні властивості металів
- •5.2.3. Характеристика й екологічна значимість окремих представників металічних елементів і їх сполук
- •5.3.1. Місце неметалічних елементів у періодичній системі. Загальна характеристика неметалів
- •5.3.2. Фізичні та хімічні властивості неметалів
- •5.3.3. Характеристика й екологічна значимість окремих представників неметалічних елементів і їх сполук
- •5.3.1. Місце неметалічних елементів у періодичній системі. Загальна характеристика неметалів
- •5.3.2. Фізичні та хімічні властивості неметалів
- •5.3.3. Характеристика й екологічна значимість окремих представників неметалічних елементів і їх сполук
- •5.4.1. Класифікація органічних сполук
- •5.4.2. Характеристика найбільш екологічно значущих органічних сполук
- •5.4.3. Органічні полімерні матеріали
- •5.4.1. Класифікація органічних сполук
- •5.4.2. Характеристика найбільш екологічно значущих органічних сполук
- •5.4.3. Органічні полімерні матеріали
- •6.1. Ядерна хімія і радіохімія
- •6.1.2. Ядерні реакції
- •6.1.3. Вплив радіоактивності на біологічні об’єкти
- •6.2.1. Причини утворення і екологічні наслідки озонових дір, парникового ефекту, смогів, кислотних дощів
- •6.2.2. Чинники, що впливають на хімічний склад природних вод
- •6.2.3. Хімічне забруднення грунтів
- •6.2.1. Причини утворення і екологічні наслідки озонових дір, парникового ефекту, смогів, кислотних дощів
- •6.2.2. Чинники, що впливають на хімічний склад природних вод
- •6.2.3. Хімічне забруднення грунтів
6.1.2. Ядерні реакції
Відомі такі типи радіоактивних перетворень: α-розпад, β-розпад, спонтанний (самочинний) поділ ядер. Ці типи радіоактивних перетворень супроводжуються випусканням α-частинок, електронів, позитронів, γ-проміння.
У процесі α-рюзпаду ядро атома радіоактивного елемента випускає ядро атома Гелію 42Не, внаслідок чого заряд ядра атома вихідного радіоактивного елемента зменшується на дві одиниці, а масове число – на чотири. Наприклад, перетворення атома Радію на атом Радону можна записати рівнянням
22686Ra → 22284Rn + 42Не.
Розрізняють декілька видів β-розпаду: електронний β-розпад; позитронний β-розпад; К-захват|. При електронному β-розпаді нейтрон усередині ядра перетворюється на протон, наприклад,
3215Р → 3214S + eˉ
де еˉ – електрон.
При випусканні негативно зарядженої β-частинки (тобто eˉ) порядковий номер елемента зростає на одиницю, а атомна маса практично не змінюється.
При позитронному β-розпаді з атомного ядра виділяється позитрон β+-частинка (тобто e+|), а протон усередині ядра перетворюється на нейтрон. Наприклад
2211Na → 2210Ne + e+.
Тривалість життя позитрона невелика, оскільки при зіткненні його з електроном відбувається анігіляція, що супроводжується випусканням γ-квантів.
Зменшення заряду ядра радіоактивного атома на одиницю може бути викликане не тільки β+-розпадом, а й електронним захопленням, внаслідок чого один із електронів найближчого до ядра електронного шару (К-шару, зрідка L- або М-шарів) захоплюється ядром. При К-захваті| ядро атома захоплює електрон з найближчої електронної оболонки (з К-оболонки|) і один з протонів ядра перетворюється на нейтрон. Наприклад,
4019К + eˉ → 4018Ar + hν
де hν – квант γ-випромінювання.
На вільне місце в К-оболонці| переходить один з електронів зовнішньої оболонки, що супроводжується випусканням жорсткого рентгенівського випромінювання.
Спонтанне
ділення. Воно
характерне для елементів періодичної
системи
Д.І. Менделєєва із Z > 90. При спонтанному
діленні
важкі атоми діляться на осколки, якими
зазвичай є
елементи середини таблиці Д.І. Менделєєва.
Спонтанне ділення і
-розпад|
обмежують отримання нових трансуранових
елементів.
Потік α і β-частинок називають відповідно α і β-випромінюванням|. Крім того, відоме γ-випромінювання|. Це електромагнітні коливання з дуже короткою довжиною хвилі. В принципі, γ-випромінювання близьке до жорсткого рентгенівського і відрізняється від нього своїм внутрішньоядерним походженням. Рентгенівське випромінювання виникає при переходах в електронній оболонці атома, а γ-випромінювання випускають збуджені атоми, що вийшли в результаті радіоактивного розпаду (α або β).
У
результаті радіоактивного розпаду
виходять елементи, які по заряду ядер
(порядковому номеру) повинні бути
поміщені у вже зайняті клітинки
періодичної системи елементами з таким
же порядковим номером, але іншою атомною
масою. Це так звані ізотопи.
По хімічних властивостях їх прийнято
вважати невиразними, тому суміш ізотопів
зазвичай розглядається як один елемент.
Незмінність ізотопного складу в
переважній більшості хімічних реакцій
іноді
називають законом
постійності
ізотопного
складу.
Наприклад,
калій в природних сполуках є
сумішшю ізотопів, що перебуває на 93,259
% з
K,
на 6,729% з
К
|
і
на 0,0119%
з
К
(К|-захват|
і β-розпад|).
Кальцій налічує шість стабільних
ізотопів з масовими числами 40, 42, 43, 44,
46 і 48. У хіміко-аналітичних і
дуже багатьох інших реакціях це
співвідношення зберігається практично
незмінним, тому для розділення ізотопів
хімічні |реакції
зазвичай не застосовуються. Найчастіше
для цієї мети
використовуються різні фізичні процеси
– дифузія, дистиляція
або електроліз.
Одиницею активності ізотопу є беккерель (Бк), рівний активності нукліда в радіоактивному джерелі, в якому за час 1 с відбувається один акт розпаду.