
- •Лекція вступ
- •32 Г (1 моль) — х л
- •1.2. Хімічний елемент
- •1.3. Основні закони хімії
- •2.1. Періодичний закон і періодична система хімічних елементів д. І. Менделеєва
- •2.1.2. Періодична система елементів
- •2.1.3. Розвиток періодичного закону
- •2.2.2. Характеристика орбіталей
- •2.2.3. Електронні формули
- •2.2.4. Властивості та енергетичні характеристики атомів
- •2.3.2. Ковалентний зв’язок
- •2.3.3. Йонний зв’язок
- •2.3.4. Водневий зв’язок
- •2.3.5. Металічний зв’язок
- •2.3.6. Взаємодія між молекулами
- •2.3.7. Комплексний зв’язок
- •3.1. Енергетика хімічних процесів
- •3.1.3. Ентропія, енергія Гіббса та напрямленість процесів
- •3.2.2. Фактори, що впливають на швидкість реакції
- •3.2.3. Каталіз
- •3.3.2. Хімічна рівновага
- •3.3.3. Принцип Ле Шательє
- •4.1. Розчини. Дисперсні системи
- •4.1.2. Розчини. Розчинність
- •4.1.3. Чисельне вираження складу розчинів
- •4.2.2. Дисоціація води. Водневий показник
- •4.2.3. Буферні розчини
- •4.2.4. Гідроліз солей
- •4.3.2. Ступінь окиснення
- •4.3.3. Теорія окисно-відновних реакцій
- •4.3.4. Найголовніші окисники і відновники
- •4.3.5. Класифікація окисно-відновних реакцій
- •4.3.6. Складання рівнянь окисно-відновних реакцій
- •4.4.2. Електродні потенціали
- •4.4.3. Ряд електрохімічних потенціалів металів
- •4.4.4. Електроліз
- •4.4.5. Корозія та захист металів
- •5.1. Основні класи неорганічних сполук
- •5.1.2. Оксиди
- •5.1.3. Основи
- •5.1.4. Кислоти
- •5.1.5. Амфотерні гідроксиди
- •5.1.7. Солеподібні бінарні сполуки
- •5.1.8. Галоген- і тіоангідриди
- •5.1.9. Металоїди (інтерметалоїди)
- •5.2.1. Місце металічних елементів у періодичній системі. Загальна характеристика металів
- •5.2.2. Фізичні та хімічні властивості металів
- •5.2.3. Характеристика й екологічна значимість окремих представників металічних елементів і їх сполук
- •5.2.1. Місце металічних елементів у періодичній системі. Загальна характеристика металів
- •5.2.2. Фізичні та хімічні властивості металів
- •5.2.3. Характеристика й екологічна значимість окремих представників металічних елементів і їх сполук
- •5.3.1. Місце неметалічних елементів у періодичній системі. Загальна характеристика неметалів
- •5.3.2. Фізичні та хімічні властивості неметалів
- •5.3.3. Характеристика й екологічна значимість окремих представників неметалічних елементів і їх сполук
- •5.3.1. Місце неметалічних елементів у періодичній системі. Загальна характеристика неметалів
- •5.3.2. Фізичні та хімічні властивості неметалів
- •5.3.3. Характеристика й екологічна значимість окремих представників неметалічних елементів і їх сполук
- •5.4.1. Класифікація органічних сполук
- •5.4.2. Характеристика найбільш екологічно значущих органічних сполук
- •5.4.3. Органічні полімерні матеріали
- •5.4.1. Класифікація органічних сполук
- •5.4.2. Характеристика найбільш екологічно значущих органічних сполук
- •5.4.3. Органічні полімерні матеріали
- •6.1. Ядерна хімія і радіохімія
- •6.1.2. Ядерні реакції
- •6.1.3. Вплив радіоактивності на біологічні об’єкти
- •6.2.1. Причини утворення і екологічні наслідки озонових дір, парникового ефекту, смогів, кислотних дощів
- •6.2.2. Чинники, що впливають на хімічний склад природних вод
- •6.2.3. Хімічне забруднення грунтів
- •6.2.1. Причини утворення і екологічні наслідки озонових дір, парникового ефекту, смогів, кислотних дощів
- •6.2.2. Чинники, що впливають на хімічний склад природних вод
- •6.2.3. Хімічне забруднення грунтів
4.4.3. Ряд електрохімічних потенціалів металів
Явище витіснення одних металів іншими металами з їхніх солей вперше було вивчене видатним російським вченим М. М. Бекетовим у 1865 р. Розмістивши всі метали в порядку ослаблення хімічної активності, він встановив так званий «витискувальний ряд», який тепер називається рядом електрохімічних потенціалів. Положення кожного металу в ряду електрохімічних потенціалів точно визначається за величиною стандартного електродного потенціалу процесів, що описуються загальним рівнянням
Меn+ + nеˉ = Ме.
Усі електродні процеси, які відповідають цьому загальному рівнянню, утворюють ряд електрохімічних потенціалів металів (табл. 9).
Таблиця 3. Ряд електрохімічних потенціалів металів (у водних розчинах)
Рівняння електродного процесу |
Стандартний потенціал φo, В |
Рівняння електродного процесу |
Стандартний потенціал φo, В |
Li+ + 1eˉ = Li |
–3,045 |
Co2+ + 2eˉ = Co |
–0,277 |
Pb+ + 1eˉ = Pb |
–2,925 |
Ni2+ + 2eˉ = Ni |
–0,250 |
K+ + 1eˉ = K |
–2,924 |
Sn2+ + 2eˉ = Sn |
–0,136 |
Cs+ + 1eˉ = Cs |
–2,923 |
Pb2+ + 2eˉ = Pb |
–0,126 |
Ca2+ + 2eˉ = Ca |
–2,866 |
Fe3+ + 3eˉ = Fe |
–0,037 |
Na+ + 1eˉ = Na |
–2,714 |
2H+ + 2eˉ = H2 |
0,000 |
Mg2+ + 2eˉ = Mg |
–2,363 |
Bi3+ + 3eˉ = Bi |
+0,215 |
Al3+ + 3eˉ = Al |
–1,663 |
Cu2+ + 2eˉ = Cu |
+0,337 |
Ti2+ + 2eˉ = Ti |
–1,630 |
Cu+ + 1eˉ = Cu |
+0,520 |
Mn2+ + 2eˉ = Mn |
–1,179 |
Hg22+ + 2eˉ = 2Hg |
+0,789 |
Cr2+ + 2eˉ = Cr |
–0,913 |
Ag+ + 1eˉ = Ag |
+0,799 |
Zn2+ + 2eˉ = Zn |
–0,763 |
Hg2+ + 2eˉ = Hg |
+0,854 |
Cr3+ + 3eˉ = Cr |
–0,744 |
Pt2+ + 2eˉ = Pt |
+1,188 |
Fe2+ + 2eˉ = Fe |
–0,440 |
Au3+ + 3eˉ = Au |
+1,498 |
Cd2+ + 2eˉ = Cd |
–0,403 |
Au+ + 1eˉ = Au |
+1,692 |
Положення того чи іншого металу в ряду електрохімічних потенціалів є характеристикою його здатності до окисно-відновних реакцій за стандартних умов. Йони металів є окисниками, атоми металів — відновниками. Чим далі від початку розміщується метал у ряду електрохімічних потенціалів, тим сильнішим окисником у водному розчині є його йони. Чим ближче знаходиться метал до початку ряду, тим сильніші відновні властивості виявляють його атоми.
Усі активні метали, розміщені в ряду електрохімічних потенціалів до водню, здатні витісняти його з кислот-неокисників.
Потенціал електродного процесу
2Н+ + 2еˉ = Н2
при рН = 7 становить
φ = φ° + 0,059 lg[Н+].
Оскільки φ стандартного водневого електрода дорівнює нулю, в нейтральному середовищі φ = – 0,059 рН, або φ = – 0,059 ∙ 7 = – 0,41 В.
Отже, Гідроген із води здатні витісняти тільки активні метали, стандартний потенціал яких значно нижчий, ніж – 0,41 В (це метали початку ряду електрохімічних потенціалів: Lі — Мg). Метали, розміщені між магнієм і кадмієм, за нормальних умов не здатні витісняти Гідроген із води, оскільки на поверхні цих металів є захисні оксидні плівки. Магній витісняє Гідроген тільки з гарячої води.
Зіставивши значення стандартних потенціалів двох металів, можна визначити, який з них буде витісняти інший метал з розчинів його солей. За стандартними потенціалами двох металів легко визначити е. р. с. утвореного ними гальванічного елемента.
Н а п р и к л а д, якщо пластинки цинку (φ° = – 0,760 В) та срібла (φ° = + 0,799 В), занурені відповідно у розчини цинк нітрату і аргентум нітрату з активностями, близькими до одиниці, то, враховуючи, що Е° = φ°Ag – φ°Zn, можна обчислити електрорушійну силу цього гальванічного елемента:
Е° = 0,799 – (– 0,760) = 1,559 В.
За стандартними електродними потенціалами можна обчислити константи рівноваги реакцій взаємного витіснення металів і інших редокс-процесів.