Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекції 2013-14.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.74 Mб
Скачать

4.3.6. Складання рівнянь окисно-відновних реакцій

При складанні рівнянь ОВР застосовуються два методи — метод електронного балансу і метод йонно-електронний (метод напівреакцій).

За допомогою методу електронного балансу розрахунок кількостей прийнятих і відданих електронів здійснюється відповідно до значень ступенів окиснення атомів до і після реакції. Послідовність дій при цьому методі така:

1. Скласти схему реакції із зазначенням вихідних речовин і продуктів реакції.

2. Визначити ступінь окиснення атомів у речовинах правої і лівої частин схеми; зазначити атоми, ступінь окиснення яких змінюється.

3. Скласти рівняння процесів окиснення і відновлення; знайти баланс кількості електронів, відданих при окисненні і прийнятих при відновленні, шляхом уведення множників, що визначають з найменшого кратного для коефіцієнтів у процесах окиснення і відновлення.

4. Розставити отримані окисно-відновні коефіцієнти в схемі реакції.

5. Розставити відсутні коефіцієнти перед формулами всіх речовин у лівій і пра­вій частинах рівняння і перевірити матеріальний баланс рівняння.

П р и к л а д. Складання рівняння окисно-відновної ре­акції магнію з розведеною нітратною кислотою.

1. Записуємо схему реакції:

Мg + НNO3 → Мg(NO3)2 + N2O + Н2O.

2. Знаходимо окисник і відновник:

0 +5 -2 +1

Мg + НNO3 → Мg(NO3)2 + N2O + Н2O.

Мg — відновник, НNO3 — окисник.

3. Складаємо рівняння електронного балансу:

Відновник Мgº – 2еˉ = Мg+2 4 – окиснення

8

Окисник 2N+5 + 8еˉ = 2N+1 1 – відновлення

Для напівреакції окиснення коефіцієнтом є чотири, а для напівреакції відновлення — одиниця.

4Мg + 2N+5 → 4Мg+2 + 2N+1.

4. Розставляємо отримані коефіцієнти в схемі реакції:

4Мg + НNO3 → 4Мg(NO3)2 + N2O + Н2O.

5. Складаємо рівняння реакції:

4Мg + 10НNO3 → 4Мg(NO3)2 + N2O + 5Н2O.

Метод йонно-електронний (метод напівреакцій). Цей метод грунтується на складанні йонних рівнянь для процесу окиснення і відновлення з наступним підсумовуванням їх у загальне рівняння. Послідовність дій при цьому методі така:

1. Визначити ступінь окиснення атомів у схемі реакції.

2. Скласти йонну схему реакції.

3. Записати йонні рівняння напівреакцій окиснення і відновлення, зрівняти в лівій і правій частинах рівнянь кількість атомів кожного елемента, додаючи для балансу відповідні речовини і продукти дисоціації молекул води.

4. Підсумувати рівняння обох напівреакцій з урахуванням електронного балансу.

5. Записати рівняння реакції, використовуючи коефіцієнти електронного балансу.

П р и к л а д. Рівняння окисно-відновної реакції між натрій сульфітом Nа2SO3 і калій перманганатом КМnO4 у кислому середовищі Н2SO4 складаємо в такий спосіб:

1. Визначаємо ступінь окиснення атомів у схемі реакції:

+4 +7 +6 +2

2SO3 + КМnO4 + Н2SO4 → Na2SO4 + МnSO4 + К2SO4 + Н2O.

2. Складаємо йонну схему реакції:

SO32ˉ + МnO4ˉ + Н+ → SO4 + Мn2+.

3. Записуємо рівняння напівреакцій окиснення й відновлення і вирівнюємо число атомів кожного елемента, додаючи для балансу атомів відповідні речовини.

SO32ˉ – 2еˉ + Н2О = SO4 + 2Н+ 5 – окиснення

10

МnО4ˉ + 5еˉ + 8Н+ = Мn2+ + 4Н2O 2 – відновлення

Рівняння напівреакції окиснення має такий йонно-електронний вигляд:

5SO32ˉ – 10еˉ + 5Н2O = 5SO4 + 10Н+

Рівняння напівреакції відновлення має такий йонно-електронний вигляд:

2МnО4ˉ+ 10еˉ + 16Н+ = 2Мn2+ + 8Н2O.

4. Підсумовуємо рівняння обох напівреакцій:

5SO32ˉ – 10еˉ + 5Н2О = 5SO4 + 10Н+

2МnО4ˉ + 10еˉ + 16Н+ = 2Мn2+ + 8Н2O

_______________________________________________________________________

5SO32ˉ + 2МnО4ˉ + 6Н+ = 5SO4 + 2Мn2+ + 3Н2O

5. Записуємо рівняння реакції:

5Nа2SO3 + 2КМnO4 + 3Н2SO4 → 5Na2SO4 + 2МnSO4 + К2SO4 + 3Н2O.

Складання рівнянь окисно-відновних реакцій за допомогою методу напівреакцій приводить до того самого результату, що і метод електронного балансу. Перевага методу напівреакцій порівняно з методом електронного балансу в тому, що в ньому застосовуються не гіпотетичні, а реально існуючі йони. У розчині немає йонів Мn+7, Сг+6, S+6, а є йони МnO4ˉ, СгО42ˉ, Сr2O72ˉ, SO4. При цьому методі виявляється роль середовища як активного учасника всього процесу. При використанні методу напів реакцій не треба знати всі продукти реакції, вони з’являються в рівнянні реакції при виведенні його. Однак метод електронного балансу менш трудомісткий, і він часто використовується для визначення коефіцієнтів хімічного рівняння, коли всі учасники реакції визначені.

Окисно-відновні реакції — найрозповсюдженіші в природі і техніці. Вони є основою життєдіяльності: фотосинтезу, дихання, обміну речовин. їх можна спостерігати при згорянні палива, при електролізі, у процесах корозії металів. Окисно-відновні реакції є основою металургійних процесів. З їхньою допомогою одержують багато яких хімічних речовин. Завдяки цим реакціям відбувається перетворення хімічної енергії на електричну в гальванічних елементах і акумуляторах.

Запитання і завдання для контролю і самоконтролю знань

1. Які реакції називаються окисно-відновними?

2. Розкрийте умови і характер перебігу окисно-відновного процесу.

3. Як залежить перебіг окисно-відновного процесу від реакції середовища? Наведіть приклади.

4. Перелічіть типи окисно-відновних реакцій.

5. Які речовини в окисно-відновних реакціях називаються відновниками, а які окисниками? Назвіть найголовніші відновники й окисники.

6. Розкрийте роль окисно-відновних реакції в природі і техніці.

7. Визначте ступінь окиснення Сr в таких сполуках: К2СrО4, Сr2О3, Fе(СrО2)2, К2Сr2О7, Сr2(SО4)3.

8. Вкажіть, які з приведених процесів являють собою окиснення, а які – відновлення: S → SO ; S → S ; Sn → Sn ; К → К+; Вr2 → 2Вr ; 2Н+ → Н2; Н2 → 2Нˉ; Сlˉ→ СlО ; V2+ → VO3ˉ; IО I2 ; МnО → МnО .

Лекція 4.4. ЕЛЕКТРОХІМІЧНІ ПРОЦЕСИ

План

4.4.1. Гальванічний елемент

4.4.2. Електродні потенціали

4.4.3. Ряд електрохімічних потенціалів металів

4.4.4. Електроліз

4.4.5. Корозія та захист металів

Література

/1/ - Романова Н. В. Загальна та неорганічна хімія. – К.: Ірпінь, ВТФ

«Перун», 2002. – 480 с. (Розділ 10. § 10.2-10.4).

/2/ - Глинка Н. Л. Общая химия. – Л.: Химия, 1987. – 704 с.

(Глава ІХ. § 98-103).

4.4.1. Гальванічний елемент

Характерною властивістю металів є їх здатність лише віддавати електрони. тобто вільні метали можуть виступати тільки в ролі відновників.

Здатність металів до утворення вільних позитивно заряджених йонів яскраво виявляється в реакціях витіснення металів з їхніх солей іншими, активнішими металами або під час взаємодії з кислотами-неокисниками. Наприклад, під час взаємодії цинку з хлоридною або розбавленою сульфатною кислотою відбувається окисно-відновна реакція витіснення Гідрогену цинком.

Здатність різних металів віддавати електрони оцінюють за реакціями витіснення цих металів з їхніх солей іншими металами. Так, якщо цинкову пластинку занурити в розчин купрум сульфату, то відбудеться окисно-відновна реакція

Zn + Сu2+ = Сu↓ + Zn2+.

Рис. 5. Схема мідно-цинкового гальванічного елемента

Ця реакція відбувається, наприклад, у гальванічному елементі, в якому цинкова пластинка (один електрод) занурена у розчин цинк сульфату, а мідна (другий електрод) — у розчин купрум(ІІ) сульфату. Сполучивши цинковий та мідний електроди з галь­ванометром і з’єднавши розчини U-подібною трубкою, заповненою розчином електроліту КNO3, дістають гальванічний елемент (елемент Якобі-Даніеля, рис. 5).

Після встановлення у гальванічному колі контакту стрілка гальванометра відхиляється у напрямку до мідного електрода. Це свідчить про те, що під час роботи гальванічного елемента електрони рухаються від цинкового електрода до мідного.

Гальванічний елемент — це прилад, що служить для перетворення хімічної енергії окисно-відновної реакції на електричну. У гальванічному елементі електрони переходять від віднов­ника до окисника не безпосередньо, а по провіднику електричного струму — по зовнішньому колу. Цей напрямлений потік електронів і є електричним струмом.

На цинковому електроді елемента Якобі-Даніеля відбувається розчинення цинку з перетворенням його атомів на йони, тобто процес окиснення:

Znº – 2еˉ = Zn2+,

а вивільнені електрони по провіднику переходять на мідний електрод, де відбувається розряджання катіонів Купруму (процес відновлення), що супроводжується виділенням металічної міді:

Сu2+ + 2еˉ = Сuº↓.

Сумарне рівняння реакції, внаслідок якої у колі виникає електричний струм, матиме вигляд:

Znº + Сu2+ = Zn2+ + Сuº↓,

або в молекулярній формі: 

Zn + CuSO4 = Cu + ZnSO4.

Схематично гальванічний елемент Якобі-Даніеля зображують так:

,

або (–) Zn ZnSO4  CuSO4 Cu (+).

Із схеми видно, що в розчині катіони Zn2+ і Сu2+ переміщуються від цинкового електрода до мідного, а аніони SO42ˉ — у зворотному напрямку. Електрод, на якому відбувається процес окиснення, називається анодом, а електрод, на якому відбувається процес відновлення, — катодом. У мідно-цинковому елементі анодом є цинковий електрод, а катодом — мідний.

Електричний струм, що проходить по зовнішньому колу гальванічного елемента, здатний виконувати певну корисну роботу. Величина роботи, яку можна виконати внаслідок перетворення хімічної енергії окисно-відновної реакції, що відбувається в гальванічному елементі, залежить від величини струму, який виникає в цьому елементі.

Електрорушійною силою гальванічного елемента Е° називається максимальне значення напруги гальванічного елемента, що відповідає перебігу реакції в прямому і зворотному напрямках. Електрорушійна сила гальванічного елемента дорівнює різниці потенціалів між його електродами.

Величину Е° можна обчислити за різницею стандартних електродних (окисно-відновних) потенціалів φ°. Так, для реакції, що відбувається в елементі Якобі—Даніеля,

Е° = φ°Cuφ°Zn.

Для обчислення Е від величини потенціалу катода слід відняти величину потенціалу анода. В гальванічному елементі, як уже зазначалось, катодом є позитивно заряджений електрод, анодом — негативно заряджений (під час електролізу — навпаки).

Якщо стандартна е. р. с. гальванічного елемента Е° має додатну величину (ΔGº < 0), то це означає, що дана реакція йде в прямому напрямку, а якщо від’ємну — у зворотному.

Поляризація – це зміна величини електродного потенціалу катода чи анода через зміну стану поверхні електрода – утворення нерозчинних солей, оксидних і газових плівок, які виникають на поверхні електрода при роботі гальванічного елемента.

Н а п р и к л а д, для гальванічного елемента:

Zn|H2SO4|Cu на катоді відбувається процес: 2H+ + 2еˉ → H2↑.

Хімічна поляризація в цьому випадку обумовлена утворенням газової плівки водню, що ізолює поверхню катода від розчину електроліту, в наслідок чого зменшується е. р. с.

Концентраційна поляризація електродів виникає за рахунок зміни концентрації йонів у приповерхневому шарі електрода, що впливає на величину потенціалу електрода.

Н а п р и к л а д, при роботі мідно-цинкового гальванічного елемента:

Zn ZnSO4  CuSO4 Cu зростає концентрація йонів Zn2+ біля анода і зменшується концентрація йонів Сu2+ біля катода, це призводить до зближення потенціалів катода і анода, тобто до зменшення е. р. с.

Усунення або зниження поляризації називається деполяризацією. Концентраційна поляризація зменшується за рахунок перемішуванням електроліту, а хімічна – введенням деполяризаторів.