
- •Глава 1. Основные определения, история проблемы,
- •Глава 2 Онтологическая инженерия описания предметной области ……50
- •Глава 3. Представление и вывод знаний в системах искусственного интеллекта на основе логических моделей. 65
- •Глава 4 Представление и вывод знаний в системах искусственного интеллекта на основе семантических сетей 98
- •Контрольные вопросы и задание 110
- •Глава 5. Представление и вывод знаний в системах искусственного интеллекта на основе фреймовых моделей. 111
- •Глава 6. Представление и вывод знаний в системах искусственного интеллекта на основе продукционных моделей. 118
- •Глава 7. Представление и вывод неопределённых знаний в системах искусственного интеллекта. 132
- •Лекция 1
- •Глава 1. Основные определения, история проблемы, современные направления развития.
- •Основные определения искусственного интеллекта.
- •1.2. Тест Тьюринга
- •Науки, лежащие в основе искусственного интеллекта
- •Вычислительная техника (период с 1940 года по настоящее время)
- •История искусственного интеллекта.
- •Рождение искусственного интеллекта (1956 год)
- •Ранний энтузиазм, большие ожидания (период с 1952 года по 1969 год)
- •Столкновение с реальностью (период с 1966 года по 1973 год)
- •Лекция 2
- •Основные современные направления развития искусственного интеллекта
- •1.6. Основные понятия о знаниях.
- •1.7. Выводы по 1-ой главе:
- •Контрольные вопросы и задание
- •Лекция 3
- •Глава 2 Онтологическая инженерия описания предметной области.
- •2.1. Понятие онтологии.
- •2.2. Теория множеств - математический аппарат описания онтологии.
- •2.2.1. Основные понятия и определения.
- •Лекция 4
- •2.2.2.Операции над множествами
- •2.2.3. Декартово произведение множеств
- •2.2.4. Отношения и их свойства.
- •2.3. Предметы, свойства и отношения предметной области.
- •Лекция 5
- •2.4. Понятие цели
- •2.5. Методика решения задач.
- •2.6. Понятие модели.
- •2.7. Методика построения онтологии.
- •2.8. Выводы по 2-ой главе.
- •2.9. Контрольные вопросы и задание.
- •Лекция 6
- •Глава3 Представление и вывод знаний в системах искусственного интеллекта на основе логических моделей.
- •3.1. Основы математической логики
- •3.1.1. Классификация и определение логик, алгебр, исчислений, теорий.
- •3.1.2.Традиционная логика.
- •Лекция 7
- •3.1.3.Логика, алгебра и исчисление высказываний.
- •3.1.4. Логика, алгебра и исчисление предикатов
- •Лекция 8
- •3.1.5. Формальные методы вывода решений в аксиоматических теориях.
- •3.1.6. Приведение формул исчисления предикатов к дизъюнктам Хорна.
- •4. Исключение кванторов существования.
- •3.2. Логическая модель представления знаний.
- •3.3. Вывод в системах искусственного интеллекта с логическим представлением знаний.
- •3.3.1. Правило резолюции.
- •Стратегия полного перебора.
- •Стратегия опорного множества.
- •3. Линейная по входу стратегия.
- •3.4. Выводы по 3-ой главе.
- •Контрольные вопросы и задание.
- •Лекция 9
- •Глава 4 Представление и вывод знаний в системах искусственного
- •Элементы теории графов
- •4.1.1. Способы задания графов.
- •1. Графический
- •2. С помощью матрицы инцидентности.
- •3. С помощью списка ребер.
- •4. С помощью матрицы смежности.
- •4.1.2. Задачи, решаемые с помощью графов.
- •Задача поиска наикратчайшего пути на графе.
- •Транспортная задача.
- •Задача о назначении (задача коммивояжера).
- •Задача о назначении работ.
- •Лекция 10
- •4.2. Представления знаний в виде семантических сетей.
- •4.3. Вывод в системах искусственного интеллекта с представлением знаний в виде семантических сетей.
- •Выводы по 4-ой главе.
- •Контрольные вопросы и задание.
- •Лекция 11
- •Глава 5. Представление и вывод знаний в системах искусственного интеллекта на основе фреймовых моделей.
- •5.1. Представления знаний в виде фреймов
- •5.2. Вывод в системах искусственного интеллекта с фреймовым
- •Выводы по 5-ой главе.
- •5.4. Контрольные вопросы и задание.
- •Лекция 12
- •Глава 6. Представление и вывод знаний в системах искусственного интеллекта на основе продукционных моделей.
- •Представление знаний в виде в виде системы продукций.
- •6.2. Продукционные системы
- •6.3. Прямой и обратный вывод в продукционных системах.
- •Лекция 13
- •6.4. Пример работы продукционной системы.
- •6.5. Выводы по 6-ой главе
- •6.6. Контрольные вопросы и задание
- •Лекция 14
- •Глава 7. Представление и вывод неопределённых знаний в системах искусственного интеллекта
- •Представление и вывод при нечётких знаниях.
- •7.1.1. Определение нечёткого множества.
- •7.1.2. Операции над нечёткими множествами.
- •Лекция 15
- •7.1.3. Нечёткие отношения.
- •Формальные методы вывода решений в нечёткой логике.
- •Лекция 16
- •7.2.Представление и вывод при неполных знаниях.
- •Вероятностный подход к представлению неопределённых знаний.
- •Определения и виды вероятности
- •Аксиомы вероятностей
- •Лекция 17
- •7.2.4. Формальные методы вывода решений при вероятностном подходе.
- •7.2.5. Правило Байеса и его использование.
- •Байесовская сеть представления и вывода вероятностных знаний.
- •Другие способы представления и вывода неопределённых знаний.
- •Выводы по 7-ой главе
- •7.5. Контрольные вопросы и задание.
- •Литература
Рождение искусственного интеллекта (1956 год)
В Принстонском университете проводил свои исследования еще один авторитетный специалист в области искусственного интеллекта, Джон Маккарти. После получения ученой степени Маккарти перешел в дартмутский колледж, который и стал официальным местом рождения этой области знаний. Маккарти уговорил Марвина Минского, Клода Шеннона и Натаниэля Рочестера, чтобы они помогли ему собрать всех американских исследователей, проявляющих интерес к теории автоматов, нейронным сетям и исследованиям интеллекта. Они организовывали двухмесячный семинар в Дартмуте летом 1956 года. Всего на этом семинаре присутствовали 10 участников, включая Тренчарда Мура из Принстонского университета, Артура Самюэла из компании IВМ, а также Рея Соломонова и Оливера Селфриджа из Массачусетсского технологического института. Два исследователя из технологического института Карнеги, Аллен Ньюэлл и Герберт Саймон, буквально монополизировали все это представление.
Тогда как другие могли лишь поделиться своими идеями и в некоторых случаях показать программы для таких конкретных приложений, как шашки, Ньюэлл и Саймон уже могли продемонстрировать программу, проводящую рассуждения, Logic Theorist (LТ), или логик-теоретик (для написания программы LТ Ньюэлл и Саймон разработали также язык обработки списков. У них не было компилятора, поэтому эти ученые транслировали программы на своем языке в машинный код вручную. Чтобы избежать ошибок, они работали параллельно, называя друг другу двоичные числа после записи каждой команды, чтобы убедиться в том, что они совпадают), в отношении которой Саймон заявил: “Мы изобрели компьютерную программу, способную мыслить в нечисловых терминах и поэтому решили почтенную проблему о соотношении духа и тела”. Вскоре после этого семинара программа показала свою способность доказать большинство теорем из главы 2 труда Рассела и Уайтхеда Ргiпсiрiа Маtетаiiса. Сообщали, что Рассел пришел в восторг, когда Саймон показал ему, что эта программа предложила доказательство одной теоремы, более короткое, чем в Ргiпсiрiа. Редакторы ]оиiпа1 оf 5утbolic Logic оказались менее подверженными эмоциям; они отказались принимать статью, в качестве соавторов которой были указаны Ньюэлл, Саймон и программа Logic Theorist.
Дартмутский семинар не привел к появлению каких-либо новых крупных открытий, но позволил познакомиться всем наиболее важным деятелям в этой научной области. Они, а также их студенты и коллеги из Массачусетсского технологического института, Университета Карнеги—Меллона, Станфордского университета и компании IВМ занимали ведущее положение в этой области в течение следующих 20 лет. Возможно, дольше всего сохранившимся результатом данного семинара было соглашение принять новое название для этой области, предложенное Маккарти, — искусственный интеллект. Возможно, лучше было бы назвать эту научную область “вычислительная рациональность”, но за ней закрепилось название “искусственный интеллект”.
Анализ предложений по тематике докладов для дартмутского семинара позволяет понять, с чем связана необходимость преобразовать искусственный интеллект в отдельную область знаний. Почему нельзя было бы публиковать все работы, выполненные в рамках искусственного интеллекта, под флагом теории управления, или исследования операций, или теории решений, которые в конечном итоге имеют цели, аналогичные искусственному интеллекту? Или почему искусственный интеллект не рассматривается как область математики? Ответом на эти вопросы, во- первых, является то, что искусственный интеллект с самого начала впитал идею моделирования таких человеческих качеств, как творчество, самосовершенствование и использование естественного языка. Эти задачи не рассматриваются ни в одной из указанных областей. Во-вторых, еще одним ответом является методология.
Искусственный интеллект — это единственная из перечисленных выше областей, которая, безусловно, является одним из направлений компьютерных наук (хотя в исследовании операций также придается большое значение компьютерному моделированию), кроме того, искусственный интеллект — это единственная область, в которой предпринимаются попытки создания машин, действующих автономно в сложной, изменяющейся среде.