
- •Глава 1. Основные определения, история проблемы,
- •Глава 2 Онтологическая инженерия описания предметной области ……50
- •Глава 3. Представление и вывод знаний в системах искусственного интеллекта на основе логических моделей. 65
- •Глава 4 Представление и вывод знаний в системах искусственного интеллекта на основе семантических сетей 98
- •Контрольные вопросы и задание 110
- •Глава 5. Представление и вывод знаний в системах искусственного интеллекта на основе фреймовых моделей. 111
- •Глава 6. Представление и вывод знаний в системах искусственного интеллекта на основе продукционных моделей. 118
- •Глава 7. Представление и вывод неопределённых знаний в системах искусственного интеллекта. 132
- •Лекция 1
- •Глава 1. Основные определения, история проблемы, современные направления развития.
- •Основные определения искусственного интеллекта.
- •1.2. Тест Тьюринга
- •Науки, лежащие в основе искусственного интеллекта
- •Вычислительная техника (период с 1940 года по настоящее время)
- •История искусственного интеллекта.
- •Рождение искусственного интеллекта (1956 год)
- •Ранний энтузиазм, большие ожидания (период с 1952 года по 1969 год)
- •Столкновение с реальностью (период с 1966 года по 1973 год)
- •Лекция 2
- •Основные современные направления развития искусственного интеллекта
- •1.6. Основные понятия о знаниях.
- •1.7. Выводы по 1-ой главе:
- •Контрольные вопросы и задание
- •Лекция 3
- •Глава 2 Онтологическая инженерия описания предметной области.
- •2.1. Понятие онтологии.
- •2.2. Теория множеств - математический аппарат описания онтологии.
- •2.2.1. Основные понятия и определения.
- •Лекция 4
- •2.2.2.Операции над множествами
- •2.2.3. Декартово произведение множеств
- •2.2.4. Отношения и их свойства.
- •2.3. Предметы, свойства и отношения предметной области.
- •Лекция 5
- •2.4. Понятие цели
- •2.5. Методика решения задач.
- •2.6. Понятие модели.
- •2.7. Методика построения онтологии.
- •2.8. Выводы по 2-ой главе.
- •2.9. Контрольные вопросы и задание.
- •Лекция 6
- •Глава3 Представление и вывод знаний в системах искусственного интеллекта на основе логических моделей.
- •3.1. Основы математической логики
- •3.1.1. Классификация и определение логик, алгебр, исчислений, теорий.
- •3.1.2.Традиционная логика.
- •Лекция 7
- •3.1.3.Логика, алгебра и исчисление высказываний.
- •3.1.4. Логика, алгебра и исчисление предикатов
- •Лекция 8
- •3.1.5. Формальные методы вывода решений в аксиоматических теориях.
- •3.1.6. Приведение формул исчисления предикатов к дизъюнктам Хорна.
- •4. Исключение кванторов существования.
- •3.2. Логическая модель представления знаний.
- •3.3. Вывод в системах искусственного интеллекта с логическим представлением знаний.
- •3.3.1. Правило резолюции.
- •Стратегия полного перебора.
- •Стратегия опорного множества.
- •3. Линейная по входу стратегия.
- •3.4. Выводы по 3-ой главе.
- •Контрольные вопросы и задание.
- •Лекция 9
- •Глава 4 Представление и вывод знаний в системах искусственного
- •Элементы теории графов
- •4.1.1. Способы задания графов.
- •1. Графический
- •2. С помощью матрицы инцидентности.
- •3. С помощью списка ребер.
- •4. С помощью матрицы смежности.
- •4.1.2. Задачи, решаемые с помощью графов.
- •Задача поиска наикратчайшего пути на графе.
- •Транспортная задача.
- •Задача о назначении (задача коммивояжера).
- •Задача о назначении работ.
- •Лекция 10
- •4.2. Представления знаний в виде семантических сетей.
- •4.3. Вывод в системах искусственного интеллекта с представлением знаний в виде семантических сетей.
- •Выводы по 4-ой главе.
- •Контрольные вопросы и задание.
- •Лекция 11
- •Глава 5. Представление и вывод знаний в системах искусственного интеллекта на основе фреймовых моделей.
- •5.1. Представления знаний в виде фреймов
- •5.2. Вывод в системах искусственного интеллекта с фреймовым
- •Выводы по 5-ой главе.
- •5.4. Контрольные вопросы и задание.
- •Лекция 12
- •Глава 6. Представление и вывод знаний в системах искусственного интеллекта на основе продукционных моделей.
- •Представление знаний в виде в виде системы продукций.
- •6.2. Продукционные системы
- •6.3. Прямой и обратный вывод в продукционных системах.
- •Лекция 13
- •6.4. Пример работы продукционной системы.
- •6.5. Выводы по 6-ой главе
- •6.6. Контрольные вопросы и задание
- •Лекция 14
- •Глава 7. Представление и вывод неопределённых знаний в системах искусственного интеллекта
- •Представление и вывод при нечётких знаниях.
- •7.1.1. Определение нечёткого множества.
- •7.1.2. Операции над нечёткими множествами.
- •Лекция 15
- •7.1.3. Нечёткие отношения.
- •Формальные методы вывода решений в нечёткой логике.
- •Лекция 16
- •7.2.Представление и вывод при неполных знаниях.
- •Вероятностный подход к представлению неопределённых знаний.
- •Определения и виды вероятности
- •Аксиомы вероятностей
- •Лекция 17
- •7.2.4. Формальные методы вывода решений при вероятностном подходе.
- •7.2.5. Правило Байеса и его использование.
- •Байесовская сеть представления и вывода вероятностных знаний.
- •Другие способы представления и вывода неопределённых знаний.
- •Выводы по 7-ой главе
- •7.5. Контрольные вопросы и задание.
- •Литература
История искусственного интеллекта.
После ознакомления с изложенным выше материалом о предъистории искусственного интеллекта перейдем к изучению процесса развития самого искусственного интеллекта.
Появление предпосылок искусственного интеллекта (период с 1943 года по 1955 год)
Первая работа, которая теперь по общему признанию считается относящейся к искусственному интеллекту, была выполнена Уорреном Мак-Каллоком и Уолтером Питтсом. Они черпали вдохновение из трех источников: знание основ физиологии и назначения нейронов в мозгу; формальный анализ логики высказываний, взятый из работ Рассела и Уайтхеда; а также теория вычислений Тьюринга. Мак-Каллок и Питтс предложили модель, состоящую из искусственных нейронов, в которой каждый нейрон характеризовался как находящийся во “включенном” или “выключенном” состоянии, а переход во “включенное” состояние происходил в ответ на стимуляцию достаточного количества соседних нейронов. Состояние нейрона рассматривалось «как фактически эквивалентное высказыванию, в котором предлагается адекватное количество стимулов». Работы этих ученых показали, например, что любая вычислимая функция может быть вычислена с помощью некоторой сети из соединенных нейронов и что все логические связки( “И”, “ИЛИ”, “НЕ” и т.д.) могут быть реализованы с помощью простых сетевых структур. Кроме того, Мак-Каллок и Питтс выдвинули предположение, что сети, структурированные соответствующим образом, способны к обучению.
Дональд Хебб продемонстрировал простое правило обновления для модификации количества соединений между нейронами. Предложенное им правило, называемое теперь правилом хеббовского обучения, продолжает служить основой для моделей, широко используемых и в наши дни. Два аспиранта факультета математики Принстонского университета, Марвин Минский и Дин Эдмондс, в 1951 году создали первый сетевой компьютер на основе нейронной сети. В этом компьютере, получившем название Snarc, использовалось 3000 электронных ламп и дополнительный механизм автопилота с бомбардировщика В-24 для моделирования сети из 40 нейронов. Аттестационная комиссия, перед которой Минский защищал диссертацию доктора философии, выразила сомнение в том, может ли работа такого рода рассматриваться как математическая, на что фон Нейман, по словам современников, возразил: “Сегодня — нет, но когда-то будет”.
В дальнейшем Минский доказал очень важные теоремы, показывающие, с какими ограничениями должны столкнуться исследования в области нейронных сетей. Кроме того, можно привести большое количество примеров других ранних работ, которые можно охарактеризовать как относящиеся к искусственному интеллекту, но именно Алан Тьюринг впервые выразил полное представление об искусственном интеллекте в своей статье Сотриting Масhinery апd Intellgence, которая была опубликована в 1950 году. В этой статье он описал тест Тьюринга, принципы машинного обучения, генетические алгоритмы и обучение с подкреплением.