
- •Глава 1. Основные определения, история проблемы,
- •Глава 2 Онтологическая инженерия описания предметной области ……50
- •Глава 3. Представление и вывод знаний в системах искусственного интеллекта на основе логических моделей. 65
- •Глава 4 Представление и вывод знаний в системах искусственного интеллекта на основе семантических сетей 98
- •Контрольные вопросы и задание 110
- •Глава 5. Представление и вывод знаний в системах искусственного интеллекта на основе фреймовых моделей. 111
- •Глава 6. Представление и вывод знаний в системах искусственного интеллекта на основе продукционных моделей. 118
- •Глава 7. Представление и вывод неопределённых знаний в системах искусственного интеллекта. 132
- •Лекция 1
- •Глава 1. Основные определения, история проблемы, современные направления развития.
- •Основные определения искусственного интеллекта.
- •1.2. Тест Тьюринга
- •Науки, лежащие в основе искусственного интеллекта
- •Вычислительная техника (период с 1940 года по настоящее время)
- •История искусственного интеллекта.
- •Рождение искусственного интеллекта (1956 год)
- •Ранний энтузиазм, большие ожидания (период с 1952 года по 1969 год)
- •Столкновение с реальностью (период с 1966 года по 1973 год)
- •Лекция 2
- •Основные современные направления развития искусственного интеллекта
- •1.6. Основные понятия о знаниях.
- •1.7. Выводы по 1-ой главе:
- •Контрольные вопросы и задание
- •Лекция 3
- •Глава 2 Онтологическая инженерия описания предметной области.
- •2.1. Понятие онтологии.
- •2.2. Теория множеств - математический аппарат описания онтологии.
- •2.2.1. Основные понятия и определения.
- •Лекция 4
- •2.2.2.Операции над множествами
- •2.2.3. Декартово произведение множеств
- •2.2.4. Отношения и их свойства.
- •2.3. Предметы, свойства и отношения предметной области.
- •Лекция 5
- •2.4. Понятие цели
- •2.5. Методика решения задач.
- •2.6. Понятие модели.
- •2.7. Методика построения онтологии.
- •2.8. Выводы по 2-ой главе.
- •2.9. Контрольные вопросы и задание.
- •Лекция 6
- •Глава3 Представление и вывод знаний в системах искусственного интеллекта на основе логических моделей.
- •3.1. Основы математической логики
- •3.1.1. Классификация и определение логик, алгебр, исчислений, теорий.
- •3.1.2.Традиционная логика.
- •Лекция 7
- •3.1.3.Логика, алгебра и исчисление высказываний.
- •3.1.4. Логика, алгебра и исчисление предикатов
- •Лекция 8
- •3.1.5. Формальные методы вывода решений в аксиоматических теориях.
- •3.1.6. Приведение формул исчисления предикатов к дизъюнктам Хорна.
- •4. Исключение кванторов существования.
- •3.2. Логическая модель представления знаний.
- •3.3. Вывод в системах искусственного интеллекта с логическим представлением знаний.
- •3.3.1. Правило резолюции.
- •Стратегия полного перебора.
- •Стратегия опорного множества.
- •3. Линейная по входу стратегия.
- •3.4. Выводы по 3-ой главе.
- •Контрольные вопросы и задание.
- •Лекция 9
- •Глава 4 Представление и вывод знаний в системах искусственного
- •Элементы теории графов
- •4.1.1. Способы задания графов.
- •1. Графический
- •2. С помощью матрицы инцидентности.
- •3. С помощью списка ребер.
- •4. С помощью матрицы смежности.
- •4.1.2. Задачи, решаемые с помощью графов.
- •Задача поиска наикратчайшего пути на графе.
- •Транспортная задача.
- •Задача о назначении (задача коммивояжера).
- •Задача о назначении работ.
- •Лекция 10
- •4.2. Представления знаний в виде семантических сетей.
- •4.3. Вывод в системах искусственного интеллекта с представлением знаний в виде семантических сетей.
- •Выводы по 4-ой главе.
- •Контрольные вопросы и задание.
- •Лекция 11
- •Глава 5. Представление и вывод знаний в системах искусственного интеллекта на основе фреймовых моделей.
- •5.1. Представления знаний в виде фреймов
- •5.2. Вывод в системах искусственного интеллекта с фреймовым
- •Выводы по 5-ой главе.
- •5.4. Контрольные вопросы и задание.
- •Лекция 12
- •Глава 6. Представление и вывод знаний в системах искусственного интеллекта на основе продукционных моделей.
- •Представление знаний в виде в виде системы продукций.
- •6.2. Продукционные системы
- •6.3. Прямой и обратный вывод в продукционных системах.
- •Лекция 13
- •6.4. Пример работы продукционной системы.
- •6.5. Выводы по 6-ой главе
- •6.6. Контрольные вопросы и задание
- •Лекция 14
- •Глава 7. Представление и вывод неопределённых знаний в системах искусственного интеллекта
- •Представление и вывод при нечётких знаниях.
- •7.1.1. Определение нечёткого множества.
- •7.1.2. Операции над нечёткими множествами.
- •Лекция 15
- •7.1.3. Нечёткие отношения.
- •Формальные методы вывода решений в нечёткой логике.
- •Лекция 16
- •7.2.Представление и вывод при неполных знаниях.
- •Вероятностный подход к представлению неопределённых знаний.
- •Определения и виды вероятности
- •Аксиомы вероятностей
- •Лекция 17
- •7.2.4. Формальные методы вывода решений при вероятностном подходе.
- •7.2.5. Правило Байеса и его использование.
- •Байесовская сеть представления и вывода вероятностных знаний.
- •Другие способы представления и вывода неопределённых знаний.
- •Выводы по 7-ой главе
- •7.5. Контрольные вопросы и задание.
- •Литература
5.2. Вывод в системах искусственного интеллекта с фреймовым
представлением знаний.
В интеллектуальных системах с фреймовым представлением знаний используются три способа управления логическим выводом: демоны, присоединенные процедуры и механизм наследования. Последний можно назвать единственным основным механизмом вывода, которым оснащены фреймовые (объектно-ориентированные) системы.
Управленческие функции механизма наследования заключаются в автоматическом поиске и определении значений слотов фреймов нижележащих уровней по значениям слотов фреймов верхних уровней, а также в запуске присоединенных процедур и демонов.
Присоединенные процедуры и демоны позволяют реализовать любой механизм вывода в системах с фреймовым представлением знаний. Однако, эта реализация имеет конкретный характер и требует значительных затрат труда проектировщиков и программистов. Рассмотрим простой пример. Фрейм «Научная конференция».
Таблица 23 Структура фрейма «Научная конференция»
Имя слота |
Значение слота |
If-needed |
If-added |
If-removed |
Дата |
1.02. 10: 10 |
|
|
|
Место проведения |
Аудитория 209 |
|
ЗАКАЗ |
|
Тема доклада |
Прогнозирование |
|
|
|
|
тенденций в экономике |
|
|
|
Докладчик |
Иванов И.И. |
КТО? |
|
|
|
|
|
|
|
Демон ЗАКАЗ - это процедура, которая автоматически запускается при попытке подстановки значения в слот с именем Место проведения. Ее главное назначение состоит в проверке возможности заказа аудитории на нужное время.
Демон КТО? автоматически запускается при обращении к слоту Докладчик, если значение этого слота не определено. Основное содержание данной процедуры - генерация запроса к пользователю типа «Кто выступает?», получение ответа и его запись в качестве значения слота.
Реализация вывода с помощью присоединенных процедур требует наличия механизма обмена информацией между фреймами. В качестве такого механизма обычно используется механизм сообщений. На рис. 48 схематично показан обмен информацией между фреймами АА и ВВ во время исполнения присоединенной процедуры САLС, при этом вызывается процедура МЕАN, расположенная во фрейме ВВ.
Рис.48. Обмен информацией между фреймами
Допустим, что процедура САLС(result) выполняет расчет, в процессе которого происходит обращение к фрейму ВВ с использованием команды МSG, реализующей передачу сообщения в другой фрейм.
Команда МSG имеет три параметра: 1 — имя слота, к которому происходит обращение (в данном случае значением слота Среднее является присоединенная процедура МЕАN); 2 — имя фрейма, в котором содержится необходимая информация (ВВ); З — имя слота-параметра, в котором находятся данные для расчета (Х). Таким образом, запуск процедуры САLС вызовет исполнение следующих действий: передача сообщения во фрейм ВВ на запуск процедуры МЕАN, которая найдет среднее арифметическое чисел, записанных в слоте Х; вычисленное значение будет записано в переменную result и передано в САLС как ответ на сообщение МSG.
Итак, в интеллектуальных системах с фреймовым представлением знаний невозможно четко отделить процедурные знания от декларативных, поскольку присоединенные процедуры и демоны одновременно являются и знаниями, и средствами управления логическим выводом. На рис. 49 схематично показаны средства управления выводом во фреймовой системе. Возможность организации выводов любого типа является существенным преимуществом фреймовых систем по сравнению с продукционными и логическими. Не менее важным достоинством является большее сходство этой модели представления знаний со структурой знаний в памяти человека. Вместе с тем практическая реализация фреймовых систем сопряжена со значительной трудоемкостью как на этапе проектирования, так и при реализации. Поэтому стоимость промышленных экспертных систем фреймового типа на порядок превосходит стоимость продукционных систем
Рис.49. Средства управления выводом в интеллектуальной системе фреймового типа