
- •Глава 1. Основные определения, история проблемы,
- •Глава 2 Онтологическая инженерия описания предметной области ……50
- •Глава 3. Представление и вывод знаний в системах искусственного интеллекта на основе логических моделей. 65
- •Глава 4 Представление и вывод знаний в системах искусственного интеллекта на основе семантических сетей 98
- •Контрольные вопросы и задание 110
- •Глава 5. Представление и вывод знаний в системах искусственного интеллекта на основе фреймовых моделей. 111
- •Глава 6. Представление и вывод знаний в системах искусственного интеллекта на основе продукционных моделей. 118
- •Глава 7. Представление и вывод неопределённых знаний в системах искусственного интеллекта. 132
- •Лекция 1
- •Глава 1. Основные определения, история проблемы, современные направления развития.
- •Основные определения искусственного интеллекта.
- •1.2. Тест Тьюринга
- •Науки, лежащие в основе искусственного интеллекта
- •Вычислительная техника (период с 1940 года по настоящее время)
- •История искусственного интеллекта.
- •Рождение искусственного интеллекта (1956 год)
- •Ранний энтузиазм, большие ожидания (период с 1952 года по 1969 год)
- •Столкновение с реальностью (период с 1966 года по 1973 год)
- •Лекция 2
- •Основные современные направления развития искусственного интеллекта
- •1.6. Основные понятия о знаниях.
- •1.7. Выводы по 1-ой главе:
- •Контрольные вопросы и задание
- •Лекция 3
- •Глава 2 Онтологическая инженерия описания предметной области.
- •2.1. Понятие онтологии.
- •2.2. Теория множеств - математический аппарат описания онтологии.
- •2.2.1. Основные понятия и определения.
- •Лекция 4
- •2.2.2.Операции над множествами
- •2.2.3. Декартово произведение множеств
- •2.2.4. Отношения и их свойства.
- •2.3. Предметы, свойства и отношения предметной области.
- •Лекция 5
- •2.4. Понятие цели
- •2.5. Методика решения задач.
- •2.6. Понятие модели.
- •2.7. Методика построения онтологии.
- •2.8. Выводы по 2-ой главе.
- •2.9. Контрольные вопросы и задание.
- •Лекция 6
- •Глава3 Представление и вывод знаний в системах искусственного интеллекта на основе логических моделей.
- •3.1. Основы математической логики
- •3.1.1. Классификация и определение логик, алгебр, исчислений, теорий.
- •3.1.2.Традиционная логика.
- •Лекция 7
- •3.1.3.Логика, алгебра и исчисление высказываний.
- •3.1.4. Логика, алгебра и исчисление предикатов
- •Лекция 8
- •3.1.5. Формальные методы вывода решений в аксиоматических теориях.
- •3.1.6. Приведение формул исчисления предикатов к дизъюнктам Хорна.
- •4. Исключение кванторов существования.
- •3.2. Логическая модель представления знаний.
- •3.3. Вывод в системах искусственного интеллекта с логическим представлением знаний.
- •3.3.1. Правило резолюции.
- •Стратегия полного перебора.
- •Стратегия опорного множества.
- •3. Линейная по входу стратегия.
- •3.4. Выводы по 3-ой главе.
- •Контрольные вопросы и задание.
- •Лекция 9
- •Глава 4 Представление и вывод знаний в системах искусственного
- •Элементы теории графов
- •4.1.1. Способы задания графов.
- •1. Графический
- •2. С помощью матрицы инцидентности.
- •3. С помощью списка ребер.
- •4. С помощью матрицы смежности.
- •4.1.2. Задачи, решаемые с помощью графов.
- •Задача поиска наикратчайшего пути на графе.
- •Транспортная задача.
- •Задача о назначении (задача коммивояжера).
- •Задача о назначении работ.
- •Лекция 10
- •4.2. Представления знаний в виде семантических сетей.
- •4.3. Вывод в системах искусственного интеллекта с представлением знаний в виде семантических сетей.
- •Выводы по 4-ой главе.
- •Контрольные вопросы и задание.
- •Лекция 11
- •Глава 5. Представление и вывод знаний в системах искусственного интеллекта на основе фреймовых моделей.
- •5.1. Представления знаний в виде фреймов
- •5.2. Вывод в системах искусственного интеллекта с фреймовым
- •Выводы по 5-ой главе.
- •5.4. Контрольные вопросы и задание.
- •Лекция 12
- •Глава 6. Представление и вывод знаний в системах искусственного интеллекта на основе продукционных моделей.
- •Представление знаний в виде в виде системы продукций.
- •6.2. Продукционные системы
- •6.3. Прямой и обратный вывод в продукционных системах.
- •Лекция 13
- •6.4. Пример работы продукционной системы.
- •6.5. Выводы по 6-ой главе
- •6.6. Контрольные вопросы и задание
- •Лекция 14
- •Глава 7. Представление и вывод неопределённых знаний в системах искусственного интеллекта
- •Представление и вывод при нечётких знаниях.
- •7.1.1. Определение нечёткого множества.
- •7.1.2. Операции над нечёткими множествами.
- •Лекция 15
- •7.1.3. Нечёткие отношения.
- •Формальные методы вывода решений в нечёткой логике.
- •Лекция 16
- •7.2.Представление и вывод при неполных знаниях.
- •Вероятностный подход к представлению неопределённых знаний.
- •Определения и виды вероятности
- •Аксиомы вероятностей
- •Лекция 17
- •7.2.4. Формальные методы вывода решений при вероятностном подходе.
- •7.2.5. Правило Байеса и его использование.
- •Байесовская сеть представления и вывода вероятностных знаний.
- •Другие способы представления и вывода неопределённых знаний.
- •Выводы по 7-ой главе
- •7.5. Контрольные вопросы и задание.
- •Литература
1.7. Выводы по 1-ой главе:
В настоящей главе дано определение искусственного интеллекта и описан исторический контекст, в котором развивалась эта область науки. Ниже приведены некоторые важные темы, которые рассматривались в этой главе.
• Взгляды ученых на искусственный интеллект не совпадают. Для того чтобы определить наиболее приемлемый для себя подход, необходимо ответить на два важных вопроса: “Интересует ли вас в основном мышление или поведение?” и “Стремитесь ли вы моделировать способности людей или строить свою работу исходя из идеального стандарта?”
• В данной книге принят подход, согласно которому интеллектуальность в основном связана с рациональной деятельностью, основанной на знаниях. В идеальном случае интеллектуальная система в любой ситуации предпринимает наилучшее возможное действие.
• Философы (начиная с 400 года до н.э.) заложили основы искусственного интеллекта, сформулировав идеи, что мозг в определенных отношениях напоминает машину, что он оперирует знаниями, закодированными на каком-то внутреннем языке, и что мышление может использоваться для выбора наилучших предпринимаемых действий.
• Математики предоставили инструментальные средства для манипулирования высказываниями, обладающими логической достоверностью, а также недостоверными вероятностными высказываниями. Кроме того, они заложили основу не только понимания того, что представляют собой вычисления, но и формирования рассуждений об алгоритмах.
• Экономисты формализовали проблему принятия решений, максимизирующих ожидаемый выигрыш для лица, принимающего решение.
• Психологи подтвердили идею, что люди и животные могут рассматриваться как машины обработки информации. Лингвисты показали, что процессы использования естественного языка укладываются в эту модель.
• Компьютерные инженеры предоставили артефакты, благодаря которым стало возможным создание приложений искусственного интеллекта. Обычно программы искусственного интеллекта имеют большие размеры, и не могли бы работать без тех значительных достижений в повышении быстродействия и объема памяти, которые были достигнуты в компьютерной индустрии.
• Теория управления посвящена проектированию устройств, которые действуют оптимально на основе обратной связи со средой. Первоначально математические инструментальные средства теории управления весьма отличались от применяемых в искусственном интеллекте, но эти научные области все больше сближаются.
История искусственного интеллекта характеризуется периодами успеха и неоправданного оптимизма, за которыми следовало снижение интереса и сокращение финансирования. В ней также были периоды, когда появлялись новые творческие подходы, а затем лучшие из них систематически совершенствовались.
• Искусственный интеллект в настоящее время развивается быстрее, чем в прошлое десятилетие, поскольку в этой области стали шире применяться научные методы экспериментирования и сравнения подходов.
• Последние достижения на пути понимания теоретических основ интеллектуальности неразрывно связаны с расширением возможностей реальных систем. Отдельные подобласти искусственного интеллекта стали в большей степени интегрированными, а сам искусственный интеллект успешно находит общую почву с другими научными дисциплинами.
Работа со знаниями является основным и наиболее фундаментальным направлением современного состояния науки искусственный интеллект.
• Практическим результатом и целью науки искусственный интеллект является создание интеллектуальных роботов.