
- •Вопрос 11 Воздух как экологический фактор.
- •Вопрос 12 Возрастная структура популяций
- •Вопрос 13 Глобальные проблемы экологии: парниковый эффект, озоновый экран.
- •Вопрос 14 Динамика популяций. Экспоненциальная и логистическая кривые численности популяций.
- •Вопрос 15 Закон оптимума. Правило ограничивающих факторов. Примеры
- •Вопрос 16. Закономерности адаптации живых организмов к действию экологических факторов
- •Вопрос 17. Классификация взаимосвязей в ценозах по Беклемешеву
- •Вопрос 18 . Климаксовая стадия сукцессии.
- •Вопрос 19. Концепция биогенной миграции элементов в биосфере по Вернадскому (живое вещество). Основные показатели сукцессионных смеи и климаксового сообщества.
- •Вопрос 20. Наземно-воздушная среда обитания. Адаптация живых организмов к ней.
- •30.Свет как экологический фактор
- •34. Температура как экологический фактор
- •37. Экологическая структура популяции
Абиотические факторы среды обитания
Напомним еще раз, что абиотические факторы - это свойства неживой природы, которые прямо или косвенно влияют на живые организмы. На рис. 5 приведена классификация абиотических факторов. Начнем рассмотрение с климатических факторов внешней среды.
Свет. Свет, с одной стороны, служит для организмов первичным источником энергии, без которого невозможна жизнь. С другой стороны, прямое воздействие света на клетку смертельно для организмов. Эволюция биосферы в целом была направлены на «укрощение» поступающего солнечного излучения, использование его полезных составляющих и защиту от вредных. Следовательно, свет – это не только жизненно важный, но и лимитирующий фактор, как на минимальном, так и максимальном уровнях.
Солнечный свет представляет собой электромагнитное излучение с различными длинами волн от 0,05 до 3000 нм (1 нм = 1Ч10-9 м) и более. Этот поток можно разделить на несколько областей, различающихся физическими свойствами и экологическим значением для различных групп организмов. Границы этих областей приближенно можно представить следующим образом:
• <150 нм - зона ионизирующей радиации,
• 150 - 400 (390) нм - ультрафиолетовая (УФ) радиация,
• 400 (390) - 800 (760) нм - видимый свет (границы диапазона различаются для разных организмов),
• 800 (760) - 1000 нм - инфракрасная (ИК) радиация,
• >1000 нм - зона т.н. дальней ИК - радиации - мощного фактора теплового режима среды.
Жесткий ультрафиолет с длиной волны менее 290 нм губительный для живых клеток, до поверхности Земли не доходит, так как отражается озоновым экраном. Мягкий ультрафиолет с длиной волны от 290 до 390 нм несет много энергии и вызывает образование витамина D в коже человека, он же воспринимается органами зрения многих насекомых; эти лучи в умеренных дозах стимулируют рост и размножение клеток, повышают содержание витаминов, увеличивают устойчивость к болезням. Видимый свет с длиной волны от 390 до 760 нм используется для фотосинтеза фототрофными организмами (растениями, фотосинтезирующими бактериями, сине-зелеными) и животными для ориентации. Инфракрасная часть солнечного спектра (тепловые лучи) с длиной волны более 750 нм вызывает нагревание предметов, особенно важна эта часть спектра для животных с непостоянной температурой тела - пойкилотермных.
На биосферу из космоса падает солнечный свет с энергией 2 кал. на 1см2 в 1 мин. Эта так называемая солнечная постоянная. Этот свет, проходя через атмосферу, ослабляется и до поверхности Земли в ясный полдень может дойти не более 67% его энергии. Проходя через облачный покров, воду и растительность, солнечный свет еще больше ослабляется, и в нем значительно изменяется распределение энергии по разным участкам спектра.
Лучистая энергия, достигающая земной поверхности в ясный день, состоит примерно на 10% из ультрафиолетового излучения, на 45%— из видимого света, на 45% — из инфракрасного излучения. Меньше всего при прохождении через облака и воду ослабляется видимый свет. Следовательно, фотосинтез может идти и в пасмурные день, и под слоем чистой воды некоторой толщины. Свет необходим всем живым организмам. Но, некоторые организмы могут развиваться в полной темноте. Например, многие грибы и бактерии.
Особое значение в жизни всех организмов имеет видимый свет. С участием света у растений и животных протекают важнейшие процессы: фотосинтез, транспирация, фотопериодизм, движение, зрение и т.д. На свету происходит образование хлорофилла и осуществляется процесс фотосинтеза, т.е. синтез органических веществ из неорганических. Фотосинтезирующая деятельность зеленых растений обеспечивает планету органическим веществом. Все организмы зависят в питании от земных фотосинтезирующих растений. Растения для фотосинтеза используют, в основном, синие и красные лучи. По отношению к свету их принято делить на светолюбивые (растения степей), теневыносливые (большинство лесообразующих пород) и теневые (мхи, папоротники).
• Зимняя спячка наблюдается у некоторых грызунов, летучих мышей. При этом резко замедляется интенсивность обмена веществ, уменьшается частота дыхательных движений и частота сердечных сокращений, понижается температура тела.
• Зимний сон. Осенью животные накапливают большое количество жировых запасов и засыпают на несколько месяцев. При этом не происходит глубокого изменения обмена веществ, животное можно разбудить, например, можно разбудить медведя в берлоге. Такое состояние помогает перенести отсутствие пищи в зимнее время.
• Анабиоз. Временное состояние организма, при котором все жизненные процессы замедлены до минимума, отсутствуют все видимые признаки жизни.
• Состояние зимнего покоя. Наблюдается у многолетних растений, направлено на перенесение низких температур. Растения накапливают различные "антифризы", чтобы в цитоплазме клеток не образовались кристаллики льда и не разрушили клеточные структуры.
Избегание неблагоприятных температурных воздействий – общий способ для всех организмов. Выработка жизненных циклов, когда наиболее уязвимые стадии проходят в самые благоприятные по температурным режимам периоды года.
2. Реакция организмов на сезонные изменения длины дня получила название фотопериодизма. Его проявление зависит не от интенсивности освещения, а только от ритма чередования темного и светлого периодов суток.
Фотопериодическая реакция живых организмов имеет большое приспособительное значение, так как для подготовки к переживанию неблагоприятных условий или, наоборот, к наиболее интенсивной жизнедеятельности требуется довольно значительное время. Способность реагировать на изменение длины дня обеспечивает заблаговременные физиологические перестройки и пригнанность цикла к сезонным сменам условий. Ритм дня и ночи выступает как сигнал предстоящих изменений климатических факторов, обладающих сильным непосредственным воздействием на живой организм (температуры, влажности и др.). В отличие от других экологических факторов ритм освещения влияет лишь на те особенности физиологии, морфологии и поведения организмов, которые являются сезонными приспособлениями в их жизненном цикле. Образно говоря, фотопериодизм – это реакция организма на будущность.
Хотя фотопериодизм встречается во всех крупных систематических группах, он свойствен далеко не всем видам. Существует много видов с нейтральной фотопериодической реакцией, у которых физиологические перестройки в цикле развития не зависят от длины дня. У таких видов либо развиты другие способы регулирования жизненного цикла (например, озимость у растений), либо они не нуждаются в точном его регулировании. Например, там, где нет резко выраженных сезонных изменений, большинство видов не обладает фотопериодизмом. Цветение, плодоношение и отмирание листьев у многих тропических деревьев растянуто во времени, и на дереве одновременно встречаются и цветки и плоды. В умеренном климате виды, успевающие быстро завершить жизненный цикл и практически не встречающиеся в активном состоянии в неблагоприятные сезоны года, также не проявляют фотопериодических реакций, например многие многолетние эфемероидные растения и эфемеры.
Различают два типа фотопериодической реакции: короткодневный и длиннодневный. Известно, что длина светового дня, кроме времени года, зависит от географического положения местности. Короткодневные виды живут и произрастают в основном в низких широтах, а длиннодневные – в умеренных и высоких. У видов с обширными ареалами северные особи могут отличаться по типу фотопериодизма от южных. Таким образом, тип фотопериодизма – это экологическая, а не систематическая особенность вида.
У длиннодневных растений и животных увеличивающиеся весенний и раннелетний дни стимулируют ростовые процессы и подготовку к размножению. Укорачивающиеся дни второй половины лета и осени вызывают торможение роста и подготовку к зиме (рис. 66). Так, морозостойкость клевера и люцерны гораздо выше при выращивании растений на коротком дне, чем на длинном. У деревьев, растущих в городах близ уличных фонарей, осенний день оказывается удлиненным, в результате у них задерживается листопад и они чаще подвергаются обморожению.
Ночные хищники, например совы, превосходно видят в условиях слабого освещения.и т.д
3. Биогеоценоз (от греч. βίος — жизнь γη — земля + κοινός — общий) — система, включающая сообщество живых организмов и тесно связанную с ним совокупность абиотических факторов среды в пределах одной территории, связанные между собой круговоротом веществ и потоком энергии (природная экосистема). Представляет собой устойчивую саморегулирующуюся экологическую систему, в которой органические компоненты (животные, растения) неразрывно связаны с неорганическими (вода, почва). Примеры: сосновый лес, горная долина.
Биогеоценоз и экосистема[править | править исходный текст]
Близким по значению понятием является экосистема — система, состоящая из взаимосвязанных между собой сообществ организмов разных видов и среды их обитания. Экосистема — более широкое понятие, относящееся к любой подобной системе. Биогеоценоз, в свою очередь — класс экосистем, экосистема, занимающая определенный участок суши и включающая основные компоненты среды — почву, подпочву, растительный покров, приземный слой атмосферы. Не являются биогеоценозами большинство искусственных экосистем. Таким образом, каждый биогеоценоз — это экосистема, но не каждая экосистема — биогеоценоз. Для характеристики биогеоценоза используются два близких понятия:биотоп и экотоп(факторы неживой природы:климат, почва). Биотоп — это совокупность абиотических факторов в пределах территории, которую занимает биогеоценоз организмы из других биогеоценозов. По содержанию экологический термин «биогеоценоз» идентичен физико-географическому термину фация.
Свойства биогеоценоза[править | править исходный текст]
естественная, исторически сложившаяся система
система, способная к саморегуляции и поддержанию своего состава на определенном постоянном уровне
характерен круговорот веществ
открытая система для поступления и выхода энергии, основной источник которой — Солнце
Основные показатели биогеоценоза[править | править исходный текст]
Видовой состав — количество видов, обитающих в биогеоценозе.
Видовое разнообразие - количество видов, обитающих в биогеоценозе на единицу площади или объема.
В большинстве случаев видовой состав и видовое разнообразие количественно не совпадают и видовое разнообразие напрямую зависит от исследуемого участка.
Биомасса — количество организмов биогеоценоза, выраженное в единицах массы. Чаще всего биомассу подразделяют на:
биомассу продуцентов
биомассу консументов
биомассу редуцентов
Продуктивность
Устойчивость
Способность к саморегуляции
Пространственные характеристики[править | править исходный текст]
Переход одного биогеоценоза в другой в пространстве или во времени сопровождается сменой состояний и свойств всех его компонентов и, следовательно, сменой характера биогеоценотического метаболизма. Границы биогеоценоза могут быть прослежены на многих из его компонентов, но чаще они совпадают с границами растительных сообществ (фитоценозов). Толща биогеоценоза не бывает однородной ни по составу и состоянию его компонентов, ни по условиям и результатам их биогеоценотической деятельности. Она дифференцируется на надземную, подземную, подводную части, которые в свою очередь делятся на элементарные вертикальные структуры — био-геогоризонты, очень специфичные по составу, структуре и состоянию живых и косных компонентов. Для обозначения горизонтальной неоднородности, или мозаичности биогеоценоза введено понятие биогеоценотических парцелл. Как и биогеоценоз в целом, это понятие комплексное, так как в состав парцеллы на правах участников обмена веществ и энергии входят растительность, животные, микроорганизмы, почва, атмосфера[1].
Механизмы устойчивости биогеоценозов[править | править исходный текст]
Одним из свойств биогеоценозов является способность к саморегуляции, то есть к поддержанию своего состава на определенном стабильном уровне. Это достигается благодаря устойчивому круговороту веществ и энергии. Устойчивость же самого круговорота обеспечивается несколькими механизмами:
достаточность жизненного пространства, то есть такой объем или площадь, которые обеспечивают один организм всеми необходимыми ему ресурсами.
богатство видового состава. Чем он богаче, тем устойчивее цепи питания и, следовательно, круговорот веществ.
многообразие взаимодействия видов, которые также поддерживают прочность трофических отношений.
средообразующие свойства видов, то есть участие видов в синтезе или окислении веществ.
направление антропогенного воздействия.
Таким образом, механизмы обеспечивают существование неменяющихся биогеоценозов, которые называются стабильными. Стабильный биогеоценоз, существующий длительное время, называется климаксическим. Стабильных биогеоценозов в природе мало, чаще встречаются устойчивые — меняющиеся биогеоценозы, но способные, благодаря саморегуляции, приходить в первоначальное, исходное положение.
Формы существующих взаимоотношений между организмами в биогеоценозах[править | править исходный текст]
Совместная жизнь организмов в биогеоценозах протекает в виде 6 основных типов взаимоотношений:
взаимополезные
симбиоз
мутуализм
полезнонейтральные (комменсализм)
нахлебничество
квартирантство
сотрапезничество
полезновредные
хищничество
паразитизм
полупаразитизм
взаимовредные
антагонизм
конкуренция
Нейтральновредные
аменсализм
Нейтральные (нейтрализм)
Структура биоценоза и схема взаимодействия
между его компонентами (по В. Н. Сукачеву, 1940)
Между биоценотическими группировками разных масштабов принципиальной разницы нет. Мелкие сообщества входят составной, нередко автономной, частью в более крупные, которые, в свою очередь, являются частями сообществ еще больших масштабов. Например, все живое население лишайниковых и моховых подушек на стволе дерева является частью более крупного сообщества организмов, связанного с этим деревом и включающего подкоровых и наствольных его обитателей, население кроны, ризосферы и т. д. Вместе с тем данная группировка лишь одна из составных частей лесного биоценоза, входящего в более сложные комплексы, которые образуют в итоге весь живой покров Земли. Следовательно, организация жизни на биоценоти-ческом уровне иерархична. Увеличение масштабов сообществ усиливает их сложность и долю непрямых, косвенных связей между видами.
Естественные объединения живых существ имеют собственные законы сложения, функционирования и развития. Важнейшими особенностями систем, относящихся к надорганизменному уровню организации жизни, по В. Тишлеру (1971), являются следующие.
1. Сообщества всегда возникают, складываются из готовых частей (представителей различных видов или целых комплексов видов), имеющихся в окружающей среде. Способ их возникновения этим отличается от формирования отдельного организма, особи, которое происходит путем постепенного дифференцирования зачатков.
2. Части сообщества заменяемы. Один вид или комплекс видов может занять место другого со сходными экологическими требованиями, без ущерба для всей системы. Части (органы) же любого организма уникальны.
3. Сообщества существуют главным образом за счет уравновешивания противоположно направленных сил. Интересы многих видов в биоценозе прямо противоположны. Так, хищники — антагонисты своих жертв, и тем не менее они существуют вместе, в рамках единого сообщества.
4. Сообщества основаны на количественной регуляции численности одних видов другими.
5. Предельные размеры организма ограничены его внутренней, наследственной программой. Размеры иадорганизменных систем определяются внешними причинами.
6. Сообщества часто имеют расплывчатые границы, иногда неуловимо переходя одно в другое.
4. Биосфе́ра (от др.-греч. βιος — жизнь и σφαῖρα — сфера, шар) — оболочка Земли, заселённая живыми организмами, находящаяся под их воздействием и занятая продуктами их жизнедеятельности; «плёнка жизни»; глобальная экосистема Земли.
Биосфера — оболочка Земли, заселённая живыми организмами и преобразованная ими. Биосфера начала формироваться не позднее, чем 3,8 млрд. лет назад, когда на нашей планете стали зарождаться первые организмы. Она проникает во всю гидросферу, верхнюю часть литосферы и нижнюю часть атмосферы, то есть населяет экосферу. Биосфера представляет собой совокупность всех живых организмов. В ней обитает более 3 000 000 видов растений, животных, грибов и бактерий. Человек тоже является частью биосферы, его деятельность превосходит многие природные процессы и, как сказал В. И. Вернадский: «Человек становится могучей геологической силой».
Распределение жизни в биосфере
На поверхности Земли в настоящее время полностью лишены живых существ лишь области обширных оледенений и кратеры действующих вулканов. В. И. Вернадский указывал на «всюдность» жизни в биосфере. Об этом свидетельствует история нашей планеты. Жизнь появилась локально в водоемах и затем распространялась все шире и шире, заняв все материки. Постепенно она захватила всю биосферу, и захват этот, по мнению В. И. Вернадского, еще не закончился. Об этих потенциальных возможностях свидетельствуют масштабы приспособляемости живых организмов.
Крайние пределы температур, которые выносят некоторые формы жизни (в латентном состоянии), – от практически абсолютного нуля до +180 °C. Давление, при котором существует жизнь, – от долей атмосферы на большой высоте до тысячи и более атмосфер на больших глубинах. Для ряда бактерий верхние критические точки давления лежат в области 12 · 108 Па (12 тыс. атм). С другой стороны, семена и споры растений, мелкие животные в анабиозе сохраняют жизнеспособность в полном вакууме.
Живые организмы могут существовать в широком диапазоне химических условий среды. Первые живые существа Земли жили в бескислородной атмосфере. Анаэробный обмен свойствен и многим современным организмам, в том числе многоклеточным.
Уксусные угрицы (нематоды) обитают в чанах с бродящим уксусом. Ряд микроорганизмов живет в концентрированных растворах солей, в том числе медного купороса, фторида натрия, в насыщенном растворе поваренной соли. Серные бактерии выдерживают децимолярные растворы серной кислоты.
Некоторые особо устойчивые формы могут существовать даже при действии ионизирующей радиации. Например, ряд инфузорий выдерживает излучение, по дозе в 3 млн раз превышающее естественный радиоактивный фон на поверхности Земли, а некоторые бактерии обнаружены даже в котлах ядерных реакторов.
Выносливость жизни в целом к отдельным факторам среды шире диапазонов тех условий, которые существуют в современной биосфере. Жизнь, таким образом, обладает значительным «запасом прочности», устойчивости к воздействию среды и потенциальной способностью к еще большему распространению.
Наряду с этим распределение жизни в биосфере отличается крайней неравномерностью. Она слабо развита в пустынях, тундрах, глубинах океана, высоко в горах, тогда как в других участках биосферы чрезвычайно обильна и разнообразна. Наиболее высока концентрация живого вещества на границах раздела основных сред – в почве, т. е. пограничном слое между литосферой и атмосферой, в поверхностных слоях океана, на дне водоемов и особенно на литорали, в лиманах и эстуариях рек, где все три среды – почва, вода и воздух – близко соседствуют друг с другом. Места наибольшей концентрации организмов в биосфере В. И. Вернадский назвал «пленками жизни».
Структура биосферы
Биосфера включает в себя: живое вещество, образованное совокупностью организмов; биогенное вещество, которое создается в процессе жизнедеятельности организмов (газы атмосферы, каменный уголь, нефть, торф, известняки и др.); косное вещество, которое формируется без участия живых организмов; биокосное вещество, представляющее собой совместный результат жизнедеятельности организмов и небиологических процессов (например, почвы).
Косное вещество биосферы. Границы биосферы определяются факторами земной среды, которые делают невозможным существование живых организмов. Верхняя граница проходит примерно на высоте 20 км от поверхности планеты и ограничена слоем озона, который задерживает губительные для жизни коротковолновую часть ультрафиолетового излучения Солнца. Таким образом, живые организмы могут существовать в тропосфере и нижних слоях стратосферы. В гидросфере земной коры организмы проникают на всю глубину Мирового океана - до 10-11 км. В литосфере жизнь встречается на глубине 3,5-7,5 км, что обусловлено температурой земных недр и условием проникновения воды в жидком состоянии.
5. Биотические факторы - все формы влияния на организм со стороны окружающих живых существ (микроорганизмов, влияние животных на растения и наоборот, влияние человека на окружающую среду).
Каждый живой организм на Земле подвергается влиянию не только факторов неживой природы, но и других живых организмов (биотических факторов). Животные и растения распределяются не хаотически, а обязательно образуют определенные пространственные группировки. Входящие в них организмы, безусловно, должны иметь общие или сходные требования к данным условиям существования, на основе которых между ними формируются соответствующие зависимости и взаимоотношения. Такая взаимосвязь возникает прежде всего на основе пищевых потребностей (связей) и способов добывания энергии, необходимой для жизненных процессов.
Биотические факторы окружающей среды (Биотические факторы; Биотические экологические факторы; Biotic factors; Biological factors; от греч. Biotikos — жизненный) — факторы живой среды, влияющие на жизнедеятельность организмов.
Беклемишев В.Н. разделил биотические факторы на 4 группы:
топические — по изменению среды (разрывание почвы)
трофические — пищевые отношения (продуценты, консументы, редуценты)
фабрические — по жилищу (паразитические черви используют организм как среду обитания)
форические — по переносу (рак отшельник переносит актинию)
Действие биотических факторов выражается в форме взаимовлияний одних организмов на жизнедеятельность других организмов и всех вместе на среду обитания. Различают прямые и косвенные взаимоотношения между организмами.
Внутривидовые взаимодействия между особями одного и того же вида складываются из группового и массового эффектов и внутривидовой конкуренции.
Межвидовые взаимоотношения значительно более разнообразны. Возможные типы комбинации отражают различные виды взаимоотношений:
нейтрализм — взаимоотношения между организмами не приносят друг другу ни вреда, ни пользы
синойкия (квартирантство) — сожительство, при котором особь одного вида использует особь другого вида только как жилище, не принося своему «живому дому» ни пользы, ни вреда. Например, пресноводная рыбка горчак откладывает икринки в мантийную полость двухстворчатых моллюсков. Развивающиеся икринки надежно защищены раковиной моллюска, но они безразличны для хозяина и не питаются за его счет.
конкуренция — антагонистические отношения между организмами (видами), связанные борьбой за пищу, самку, место обитания и другие ресурсы
мутуализм (взаимовыгодный симбиоз) — совместное сожительство организмов разных видов, приносящее взаимную пользу. Например, лишайники являются симбиотическими организмами, тело которых построено из водорослей и грибов. Нити гриба снабжают клетки водоросли водой и минеральными веществами, а клетки водорослей осуществляют фотосинтез и, следовательно, снабжают гифы грибов органическими веществами.
протокооперация (кооперация) — это полезные взаимоотношения организмов, когда они могут существовать друг без друга, но вместе им лучше. Например, рак-отшельник и актиния, акулы и рыбы-прилипалы.
комменсализм — совместное сожительство организмов разных видов, при котором один организм использует другой как жилище и источник питания, но не причиняет вреда партнеру. Например, некоторые морские полипы, поселяясь на крупных рыбах, в качестве пищи используют их испражнения. В желудочно-кишечном тракте человека находится большое количество бактерий и простейших, питающихся остатками пищи и не причиняющих вреда хозяину.
аменсализм — это взаимоотношения между организмами, при которых один несет ущерб, а другому они безразличны. Например, гриб пеницилл выделяет антибиотик, убивающий бактерий, но вторые на гриб никак не влияют.
паразитизм — это форма антагонистического сожительства организмов, относящихся к разным видам, при котором один организм (паразит), поселяясь на теле или в теле другого организма (хозяина), питается за его счет и причиняет вред. Болезнетворное действие паразитов слагается из механического повреждения тканей хозяина, отравления его продуктами обмена, питания за его счет. Паразитами являются все вирусы, многие бактерии, грибы, простейшие, некоторые черви и членистоногие. В отличие от хищника паразит использует свою жертву длительно и далеко не всегда приводит ее к смерти. Нередко вместе со смертью хозяина погибает и паразит. Связь паразита с внешней средой осуществляется опосредованно через организм хозяина.
хищничество.
6. Организмы, составляющие природные популяции, не существуют отдельно друг от друга, а обычно находятся в многообразных сложных взаимоотношениях, в результате которых происходит положительное или отрицательное влияние одних видов на другие.
Рассмотрим основные типы таких взаимоотношений.
Нейтрализм (от лаг. neutralis — не принадлежащий ни тому, ни другому): ассоциация двух популяций не сказывается ни на одной из них. Такого рода взаимоотношения в природе встречаются часто: это отношения между дождевым червем и комаром; зайцем, обитающим под пологом леса, и дятлом, живущим в дупле дерева; белкой и лосем; дроздом и волком.
Взаимное конкурентное подавление: популяции подавляют друг друга. Примером могут служить конкурентные отношения между сорняками и культурными растениями за те или иные ресурсы (свет, воду, минеральное питание). Часто рост одних растений подавляется веществами, выделяемыми тканями другого. В таком случае говорят об аллелопатическом подавлении одними растениями других.
Конкуренция за общий ресурс: одна популяция косвенно отрицательно воздействует на другую в борьбе за дефицитный ресурс. Это могут быть опосредованные отношения между видами в борьбе за добывание пищи (соперничество между волками, рысями и лисами в северных лесах, между гиенами и львами в саваннах и т.п.), т.е. виды непосредственно не нападают друг на друга. На их состояние влияет фактор присутствия или отсутствия пищи.
того моллюска обитают «гости», которые получают здесь укрытие, но не приносят хозяину ни пользы, ни вреда.
Мутуализм — связь популяций благоприятна для роста и выживания обеих, причем в естественных условиях одна не может существовать без другой.
Этим термином обозначают любые взаимоотношения между парами видов, приносящие обоюдную пользу. Мутуализм распространен очень широко: корни тесно связаны с грибами-ми- коризообразователями, полипы кораллов — с одноклеточными водорослями, цветковые растения — с опыляющими их насекомыми, кишечник большинства животных населен полезными микроорганизмами и т.д. Между партнерами-мутуалистами существуют сложные поведенческие связи. Например, африканская птица-медоуказчик приводит к гнезду медоеда (он вскрывает гнездо, поедая мед и личинок), а сама она питается остатками. (Птица-медоуказчик не способна вскрыть гнездо, а медоед с трудом находит гнездо!) В Центральной Америке один из видов муравьев живет в шипиках акаций, питаясь сахаром из нектарников на листьях и защищая от фитофагов: если с растения удалить всех муравьев, то до 85 % семян повреждаются личинками мух. Гидра на свету получает 50-100 % необходимого ей кислорода от водорослей-симбионтов. До 25 % известных видов грибов существуют в симбиозе с водорослями как лишайники, что позволяет им заселять поверхности камней и стволы деревьев, в том числе в зонах, практически непригодных для других форм жизни.
Классический пример мутуализма — сотрудничество между цветковыми растениями и опыляющими их насекомыми. Насекомое получает нектар, а взамен осуществляет необходимый для растения акт опыления. При отсутствии опылителей растения во многих случаях оказались бы на грани вымирания, а насекомые без растительной пиши погибли бы. Еще один пример таких взаимоотношений — термиты и поселяющиеся в их кишечнике простейшие, превращающие целлюлозу древесины в усваиваемые вещества, которыми питаются и они сами, и термиты.
Мдуалистической является взаимосвязь между жвачными животными (олени, крупный рогатый скот, антилопы) и бактериями, обитающими в их рубце (один из четырех отделов желудка жвачных). Рубец населен многочисленными бактериями из родов Bacteroides, Ruminococcus, Clostridium, Vethanobacterium и др. Бактерии рубца приспособлены только к анаэробным (бескислородным) условиям, и многие виды под воздействием кислорода мгновенно гибнут. Основная пища жвачных — целлюлоза и другие растительные волокна. Однако сами животные лишены ферментов, которые способны расщеплять растительный материал. Бактерии же выделяют целлюлозоразрушающис ферменты. Продукты микробной ферментации используются организмом-хозяином, а последний создает для бактерий непрерывный приток субстратов (растительная целлюлоза) и контролирует условия его сбраживания (нейтрализуя слюной излишнюю кислотность среды, где обитают бактерии).
7. Аменсализм (от греч. а — отрицание и лат. mensa — стол, трапеза): одна популяция подавляет другую, но сама не испытывает отрицательного влияния. Например, благодаря токсическим выделениям своих корней ястребинка (семейство сложноцветные) вытесняет другие однолетние растения и образует чистые заросли на довольно больших площадях. Ель в процессе роста сильно затеняет почву и тем самым вытесняет светолюбивые виды, попавшие под ее полог. Обратного воздействия ель не испытывает.
Хищничество: одна популяция неблагоприятно воздействует на другую, нападая непосредственно на нее, но тем не менее и сама зависит от объекта нападения. Хищниками могут быть различные организмы — от простейших до сложноорганизованных. Это львы и волки, кровососущие мошки и насекомоядные птицы, различные виды рыб, поедающие планктонных рачков дафний, и сами дафнии, питающиеся одноклеточными водорослями.
Потенциально каждый живой организм является источником энергии, т.е. пищей для других организмов. Именно такие пищевые взаимодействия лежат в основе переноса энергии и вещества в экосистемах.
Хищником считается всякий организм, потребляющий в качестве пищи другой живой организм. Таким образом, для установления факта хищничества необходимо наличие умерщвления одним организмом другого с целью использования его в виде пищи.
Паразитизм — одна популяция использует другую в качестве среды обитания и источника пищи. Большое количество паразитов имеется среди животных (блохи, вши, клещи, тли, бактерии, гельминты и др.), растений (петров крест, подъельник обыкновенный, гнездовка настоящая и др.), грибов (различные виды ржавчинных, головневых, мучнисторосяных грибов).
Комменсализм — одна популяция извлекает пользу от объединения, а другой это объединение безразлично.
Часто под комменсализмом понимают такое сожительство, при котором один из партнеров питается остатками пищи или продуктами выделения другого, не причиняя ему вреда. Такую разновидность комменсализма, основанную на потреблении остатков пищи хозяев, называют нахлебничеством. Таковы взаимодействия между различными видами почвенных бактерий-сап- рофитов, перерабатывающих органические вещества из перегнивших растительных остатков, и высшими растениями, которые потребляют образовавшиеся при этом минеральные соли.
Можно привести пример сожительства рыб-лоцманов и крупных хищных акул. С одной стороны, рыбы-лоцманы находятся в относительной безопасности, а с другой — им перепадают остатки не съеденной акулами пищи. На акул присутствие этих рыб не оказывает никакого влияния.
Нередко можно встретить такую форму взаимоотношений между видами, как квартирантство. Это такое сожительство организмов, когда один из видов поселяется в «жилище» другого или близ него. Данный тип взаимоотношений широко распространен у растений. Примером могут служить лианы и эпифиты (орхидеи, лишайники, мхи), поселяющиеся непосредственно на стволах и ветвях деревьев. В гнездах и норах грызунов обитает множество видов членистоногих, некоторые рыбы прячутся под зонтиками медуз со стрекательными нитями. Рыба-горчак откладывает икру в мантию двустворчатого моллюска, не причиняя ему вреда. Рыба-клоун, обитающая в биоценозе кораллового рифа, мирно сосуществует с актинией, укрываясь от хищников среди се ядовитых щупалец, к яду которых у этой рыбки выработался иммунитет.
Сапсан (вид сокола, обитающий в Сибири и Казахстане) имеет огромное значение для выживания представителей вымирающих видов — гуся и краснозобой казарки, поскольку защищает их от прожорливых песцов. Гуси не в состоянии самостоятельно отогнать этих хищников от своих гнезд и предпочитают гнездиться поближе к сапсанам. Соколам такое соседство безразлично.
Особенно часто комменсализм можно наблюдать в морской или океанической среде. Практически в каждой норке червя, в каждой раковине двустворча
8. Видовая структура сообщества включает два понятия видовой состав и видовое разнообразие. Обычно в составе сообщества имеется мало видов, представленных большим числом особей и сравнительно много особей встречающихся редко.
Чем многочисленнее вид, тем в большей степени он определяет процессы, идущие в сообществе. Некоторые виды, называемые индикаторными, указывают на состояние среды обитания. Во многих пресноводных водоемах, например, индикаторами являются ракообразные.
Второй признак, указывающий на благополучие и устойчивость сообщества – это видовое разнообразие. Чем выше видовое разнообразие, тем больше экологических ниш и тем шире возможность адаптации сообщества к изменившимся условиям среды.
ВИДОВОЙ СОСТАВ — совокупность видов, входящих в ту или иную территориально ограниченную группировку организмов (биоценоз)
Видовое разнообразие
признак экологического разнообразия: чем больше видов, тем больше экологических ниш, то есть выше богатство среды. Видовое разнообразие связано также с устойчивостью сообщества: чем больше разнообразие, тем шире возможность адаптации сообщества к изменившимся условиям, будь это изменения климата или других факторов.
Объяснение этого состоит в том, что наличие разных организмов с разными требованиями к среде повышает приспособляемость сообщества в целом. Так, редкие в данный момент виды при изменившихся условиях могут оказаться в выигрышном положении и стать многочисленными, и наоборот. Таким образом, за счет видового разнообразия сообщество обеспечивает себе как бы резерв выживаемости на случай неожиданных изменений условий жизни.
При изучении разнообразия видов имеют значение размеры организмов. В целом разнообразие больше среди мелких организмов, чем среди крупных. Например, в каком-нибудь лесу можно встретить значительно больше видов клещей, чем млекопитающих. Следует также помнить, что общее число видов в сообществах, находящихся в суровых условиях существования (Антарктика), сокращается. Сокращение числа видов происходит и при географической изоляции (например, на островах).
9
Важнейшими компонентами биосферы являются: • живое вещество (растения, животные, микроорганизмы); • биогенное вещество органического происхождения (уголь, торф, почвенный гумус, нефть, мел, известняк и др.); • косное вещество (горные породы неорганического происхождения); • биокосное вещество (продукты распада и переработки горных пород живыми организмами). По В.И. Вернадскому, живое вещество является носителем свободной энергии биосферы и связано с неживым веществом биогенной миграцией атомов. Биомасса сухого вещества живых организмов Земли, включающих около 500 тыс. видов растений и 1,5 млн видов животных, чрезвычайно велика и составляет, примерно, 2,4232*1012 т. Ежегодный прирост живого вещества на Земле составляет около 8,8*1011 т. Через эти живые организмы прошло большое количество элементов верхней части литосферы, атмосферы и гидросферы
10
Первоначально все организмы были водными. Завоевав сушу, не утратили зависимости от воды. Составной частью всех живых организмов является вода. Влажность — это количество водяного пара в воздухе. Без влажности или воды нет жизни.
Уступая по своему значению температуре, влажность относится тем не менее к основным экологическим факторам. На протяжении большей части истории живой природы органический мир был представлен исключительно водными нормами организмов. Составной частью огромного большинства живых существ является вода, и для осуществления размножения или слияния гамет почти все они нуждаются в водной среде. Сухопутные животные вынуждены создавать в своем теле искусственную водную среду для оплодотворения, а это приводят к тому, что последнее становится внутренним.
Адаптация растений и животных к влажности. Необходимость экономить воду вызвала к жизни приспособления, сходные у растений и животных. У них имеются специализированные покровные ткани, слабо проницаемые для воды. Дыхание осуществляется через небольшие отверстия, ведущие во внутренние полости, что уменьшает потери влаги. Наземные животные ищут или активно создают микроклиматические условия с подходящей влажностью. Большинство растений основную часть влаги приобретают из почвы. Этот процесс регулируется с помощью роста корней за счет особого строения листьев.
Вопрос 11 Воздух как экологический фактор.
Воздух как экологический фактор. Воздух имеет огромное значение для жизнедеятельности животных, растений и человека. Атмосфера – газовая оболочка Земли имеет четко выраженное слоистое строение. В ее состав входят тропосфера, стратосфера, мезосфера и ионосфера. Общая масса атмосферы 5,2 * 1019 т, причем 9/10 массы сосредоточено ниже 16 км, то есть в тропосфере. На слои выше 48 км приходится около 1/10 всей массы воздуха. Близкий к современному состав атмосферного воздуха сложился в конце протерозойской эры, около 1 млрд. лет назад. Атмосфера состоит в основном из азота (N2) – 78,09% и кислорода (О2) – 20,95%. В меньшем количестве в атмосферном воздухе содержится углекислый газ (СО2) – 0,03% и озон (О3), образующий озонный экран Земли (10-6%). Кроме того, в атмосфере всегда присутствуют водяные пары и инертные газы (аргон, неон, гелий, криптон, ксенон). В ничтожно малом количестве встречаются радон и его изотопы. Кислород воздуха необходим для дыхания организмов, а углекислый газ – для фотосинтеза растений. Растения в процессе фотосинтеза поглощают углекислый газ и выделяют в атмосферу кислород. Подсчитано, что 1 га леса в год поглощает 5-10 т углекислого газа и выделяет 10-20 т кислорода. За 1 час такой участок леса поглощает весь углекислый газ, выделяемый при дыхании 200 человек. Под влиянием хозяйственной и производственной деятельности человека в атмосферный воздух поступает большое количество вредных загрязняющих веществ, которые отрицательно влияют на растения, животные, состояние здоровья человека.
Низкая плотность воздуха определяет его малую подъемную силу и незначительную спорность. Обитатели воздушной среды должны обладать собственной опорной системой, поддерживающей тело: растения – разнообразными механическими тканями, животные – твердым или, значительно реже, гидростатическим скелетом. Кроме того, все обитатели воздушной среды тесно связаны с поверхностью земли, которая служит им для прикрепления и опоры. Жизнь во взвешенном состоянии в воздухе невозможна.
Правда, множество микроорганизмов и животных, споры, семена, плоды и пыльца растений регулярно присутствуют в воздухе и разносятся воздушными течениями (рис. 43), многие животные способны к активному полету, однако у всех этих видов основная функция их жизненного цикла – размножение – осуществляется на поверхности земли. Для большинства из них пребывание в воздухе связано только с расселением или поиском добычи.
Малая плотность воздуха обусловливает низкую сопротивляемость передвижению. Поэтому многие наземные животные использовали в ходе эволюции экологические выгоды этого свойства воздушной среды, приобретя способность к полету. К активному полету способны 75 % видов всех наземных животных, преимущественно насекомые и птицы, но встречаются летуны и среди млекопитающих и рептилий. Летают наземные животные в основном с помощью мускульных усилий, но некоторые могут и планировать за счет воздушных течений.
Благодаря подвижности воздуха, существующим в нижних слоях атмосферы вертикальным и горизонтальным передвижениям воздушных масс возможен пассивный полет ряда организмов.
Анемофилия – древнейший способ опыления растений. Ветром опыляются все голосеменные, а среди покрытосеменных анемофильные растения составляют примерно 10 % всех видов.
Анемофилия наблюдается в семействах буковых, березовых, ореховых, вязовых, коноплевых, крапивных, казуариновых, маревых, осоковых, злаков, пальм и во многих других. Ветроопыляемые растения имеют целый ряд приспособлений, улучшающих аэродинамические свойства их пыльцы, а также морфологические и биологические особенности, обеспечивающие эффективность опыления.
Жизнь многих растений полностью зависит от ветра, и расселение совершается с его помощью. Такая двойная зависимость наблюдается у елей, сосен, тополей, берез, вязов, ясеней, пушиц, рогозов, саксаулов, джузгунов и др.
У многих видов развита анемохория– расселение с помощью воздушных потоков. Анемохория характерна для спор, семян и плодов растений, цист простейших, мелких насекомых, пауков и т. п. Пассивно переносимые потоками воздуха организмы получили в совокупности название аэропланктона по аналогии с планктонными обитателями водной среды. Специальные адаптации для пассивного полета – очень мелкие размеры тела, увеличение его площади за счет выростов, сильного расчленения, большой относительной поверхности крыльев, использование паутины и т. п. (рис. 44). Анемохорные семена и плоды растений обладают также либо очень мелкими размерами (например, семена орхидей), либо разнообразными крыловидными и парашютовидными придатками, увеличивающими их способность к планированию (рис. 45).
В расселении микроорганизмов, животных и растений основную роль играют вертикальные конвекционные потоки воздуха и слабые ветры. Сильные ветры, бури и ураганы также оказывают существенное экологическое воздействие на наземные организмы.
Малая плотность воздуха обусловливает сравнительно низкое давление на суше. В норме оно равно 760 мм рт. ст. С увеличением высоты над уровнем моря давление уменьшается. На высоте 5800 м оно равняется лишь половине нормального. Низкое давление может ограничивать распространение видов в горах. Для большинства позвоночных верхняя граница жизни около 6000 м. Снижение давления влечет за собой уменьшение обеспеченности кислородом и обезвоживание животных за счет увеличения частоты дыхания. Примерно таковы же пределы продвижения в горы высших растений. Несколько более выносливы членистоногие (ногохвостки, клещи, пауки), которые могут встречаться на ледниках, выше границы растительности.
В целом все наземные организмы гораздо более стенобатны, чем водные, так как обычные колебания давления в окружающей их среде составляют доли атмосферы и даже для поднимающихся на большую высоту птиц не превышают 1/3нормального.
Газовый состав воздуха. Кроме физических свойств воздушной среды, для существования наземных организмов чрезвычайно важны ее химические особенности. Газовый состав воздуха в приземном слое атмосферы довольно однороден в отношении содержания главных компонентов (азот – 78,1 %, кислород – 21,0, аргон – 0,9, углекислый газ – 0,035 % по объему) благодаря высокой диффузионной способности газов и постоянному перемешиванию конвекционными и ветровыми потоками. Однако различные примеси газообразных, капельно-жидких и твердых (пылевых) частиц, попадающих в атмосферу из локальных источников, могут иметь существенное экологическое значение.
Высокое содержание кислорода способствовало повышению обмена веществ у наземных организмов по сравнению с первично-водными. Именно в наземной обстановке, на базе высокой эффективности окислительных процессов в организме, возникла гомойотермия животных. Кислород, из-за постоянно высокого его содержания в воздухе, не является фактором, лимитирующим жизнь в наземной среде. Лишь местами, в специфических условиях, создается временный его дефицит, например в скоплениях разлагающихся растительных остатков, запасах зерна, муки и т. п.
Содержание углекислого газа может изменяться в отдельных участках приземного слоя воздуха в довольно значительных пределах. Например, при отсутствии ветра в центре больших городов концентрация его возрастает в десятки раз. Закономерны суточные изменения содержания углекислоты в приземных слоях, связанные с ритмом фотосинтеза растений. Сезонные обусловлены изменениями интенсивности дыхания живых организмов, преимущественно микроскопического населения почв. Повышенное насыщение воздуха углекислым газом возникает в зонах вулканической активности, возле термальных источников и других подземных выходов этого газа. В высоких концентрациях углекислый газ токсичен. В природе такие концентрации встречаются редко.
В природе основным источником углекислоты является так называемое почвенное дыхание. Почвенные микроорганизмы и животные дышат очень интенсивно. Углекислый газ диффундирует из почвы в атмосферу, особенно энергично во время дождя. Много его выделяют почвы умеренно влажные, хорошо прогреваемые, богатые органическими остатками. Например, почва букового леса выделяет СО2 от 15 до 22 кг/га в час, а неудобренная песчаная всего 2 кг/га.
В современных условиях мощным источником поступления дополнительных количеств СО2 в атмосферу стала деятельность человека по сжиганию ископаемых запасов топлива.
Низкое содержание углекислого газа тормозит процесс фотосинтеза. В условиях закрытого грунта можно повысить скорость фотосинтеза, увеличив концентрацию углекислого газа; этим пользуются в практике тепличного и оранжерейного хозяйства. Однако излишние количества СО2 приводят к отравлению растений.
Азот воздуха для большинства обитателей наземной среды представляет инертный газ, но ряд прокариотических организмов (клубеньковые бактерии, азотобактер, клостридии, сине-зеленые водоросли и др.) обладает способностью связывать его и вовлекать в биологический круговорот.
Местные примеси, поступающие в воздух, также могут существенно влиять на живые организмы. Это особенно относится к ядовитым газообразным веществам – метану, оксиду серы, оксиду углерода, оксиду азота, сероводороду, соединениям хлора, а также к частицам пыли, сажи и т. п., засоряющим воздух в промышленных районах. Основной современный источник химического и физического загрязнения атмосферы антропогенный: работа различных промышленных предприятий и транспорта, эрозия почв и т. п. Оксид серы (SО2), например, ядовит для растений даже в концентрациях от одной пятидесятитысячной до одной миллионной от объема воздуха. Вокруг промышленных центров, загрязняющих атмосферу этим газом, погибает почти вся растительность (рис. 46). Некоторые виды растений особо чувствительны к SО2и служат чутким индикатором его накопления в воздухе. Например, многие лишайники погибают даже при следах оксида серы в окружающей атмосфере. Присутствие их в лесах вокруг крупных городов свидетельствует о высокой чистоте воздуха. Устойчивость растений к примесям в воздушной среде учитывают при подборе видов для озеленения населенных пунктов. Чувствительны к задымлению, например, обыкновенная ель и сосна, клен, липа, береза. Наиболее устойчивы туя, тополь канадский, клен американский, бузина и некоторые другие.