
- •Химическая термодинамика, термодинамические параметры (т, р, V). Внутренняя энергия. Первый закон термодинамики.
- •Энтальпия образования вещества. Закон гесса и его применение.
- •Химическая кинетика. Закон действующих масс гомогенных и гетерогенных систем. Скорость прямой и обратной реакции. Константа скорости химической реакции. Порядок и молекулярность реакции.
- •Влияние температуры на скорость реакции, правило вант-гоффа, энергия активации, уравнение аррениуса
- •Гомогенный и гетерогенный катализ. Катализаторы и ингибиторы.
- •Химическое равновесие. Смещение химического равновесия при изменении условий протекания химических процессов. Принцип ле-шателье
- •Способы выражения концентрации растворов(процентная, молярность, нормальность, моляльность, титр).
- •Закон рауля. Осмос. Физический смысл эбуллиоскопической и криоскопической постоянной.
- •Растворы электролитов. Электролитическая диссоциация. Степень диссоциации. Константа диссоциации.
- •Ионное произведение воды. Водородный показатель (рн) растворов.
- •Гидролиз солей. Константа гидролиза.
- •Электролиз. Законы фарадея. Электрохимический эквивалент. Выход по току.
- •Поляризация, ее причины. Перенапряжение.
- •Химическая коррозия металлов
- •Электрохимическая коррозия
- •Дисперсные системы. Классификация дисперсных систем
- •Кинетические и электролитические свойства коллоидных растворов
- •Химические свойства металлов.
- •Основные типы и номенклатура комплексных соединений
- •Изомерия комплексных соединений
- •Диссоциация комплексных соединений
- •Водород
- •Химия d-элементов 1 и 2 групп периодической системы
- •Смещение ионных равновесий.
- •Гидролиз солей.
Химическая термодинамика, термодинамические параметры (т, р, V). Внутренняя энергия. Первый закон термодинамики.
Химическая термодинамика изучает переходы химической энергии в другие формы — тепловую, электрическую и т. п., устанавливает количественные законы этих переходов, а также направление и пределы самопроизвольного протекания химических реакций при заданных условиях.
Объектом изучения в термодинамике является система. Системой называется совокупность находящихся во взаимодействии веществ, мысленно (или фактически) обособленная от окружающей среды. Различают гомогенные и гетерогенные системы. Гомогенные системы состоят из одной фазы, гетерогенные — из двух или нескольких фаз. Фаза — это часть системы, однородная во всех точках по составу и свойствам и отделенная от других частей системы поверхностью раздела. Примером гомогенной системы может служить вода, но вода с плавающим в ней льдом — система гетерогенная.
Одна и та же система может находиться в различных состояниях. Каждое состояние системы характеризуется определенным набором значений термодинамических параметров. К термодинамическим параметрам относятся температура, давление, плотность, концентрация и т. п. Изменение хотя бы только одного термодинамического параметра приводит к изменению состояния системы в целом. Термодинамическое состояние системы называют равновесным, если оно характеризуется постоянством термодинамических параметров во всех точках системы и не изменяется самопроизвольно (без затраты работы).
Химическая термодинамика изучает систему в двух равновесных состояниях (конечном и начальном) и на этом основании определяет возможность (или невозможность) самопроизвольного течения процесса при заданных условиях в указанном направлении. В зависимости от условий перехода системы из одного состояния в другое в термодинамике различают изотермические, изобарические, изохорические и адиабатические процессы. Первые— протекают при постоянной температуре (Т = const), вторые— при постоянном давлении (р = const), третьи — при постоянном объеме (V = const), четвертые — в условиях отсутствия обмена теплотой между системой и окружающей средой (q = 0). Химические реакции часто протекают в изобарно-изотермических условиях (р = const, T = const). Такие условия соблюдаются, когда взаимодействия между веществами осуществляются в открытых сосудах без нагревания или при более высокой, но постоянной температуре. Иногда для химических реакций соблюдаются изохорно-изотермические условия (V— const, T = const).
ВНУТРЕННЯЯ ЭНЕРГИЯ СИСТЕМЫ. При переходе системы из одного состояния в другое изменяются некоторые ее свойства, в частности внутренняя энергия U.
Внутренняя энергия системы представляет собой ее полную энергию, которая складывается из кинетической и потенциальной энергий молекул, атомов, атомных ядер и электронов. Внутренняя энергия включает в себя энергию поступательного, вращательного и колебательного движений, а также потенциальную энергию, обусловленную силами притяжения и отталкивания, действующими между молекулами, атомами и внутриатомными частицами. Она не включает потенциальную энергию положения системы в пространстве и кинетическую энергию движения системы как целого.
Внутренняя энергия является термодинамической функцией состояния системы. Это значит, что всякий раз, когда система оказывается в данном состоянии, ее внутренняя энергия принимает определенное присущее этому состоянию значение. ∆U = U2 — U1 где U1 и U2 — внутренняя энергия системы в конечном и начальном состояниях cсоответственно.
ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИ. Если система обменивается с внешней средой тепловой энергией Q и механической энергией (работой) А, и при этом переходит из состояния 1 в состоянии 2, количество энергии, которое выделится или поглощается системой форм теплоты Q или работой А равно полной энергии системы при переходе из одного состояния в другое и записывается:
q=∆U + A