Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Приходько М.А. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.28 Mб
Скачать

1.5. Основные методы построения математических моделей

Приведем классификацию методов формализованного представления моделируемых систем Волковой В.Н. и Денисова А.А.[5]. Авторами выделены аналитические, статистические, теоретико-множественные, лингвистические, логические, графические методы. Основная терминология, примеры теорий, развивающихся на базе описанных классов методов, а также сфера и возможности их применения предложены в приложении 1.

В практике моделирования систем наибольшее распространение получили аналитические и статистические методы.

1) Аналитические методы построения математических моделей.

Основу терминологического аппарата аналитических методов построения математических моделей составляют понятия классической математики (формула, функция, уравнение и система уравнений, неравенство, производная, интеграл и т.д.). Для этих методов характерна четкость и обоснованность терминологии с использованием языка классической математики.

На основе аналитических представлений возникли и получили развитие такие математические теории, как классический математический анализ (например, методы исследования функций), так и современные основы математического программирования и теории игр. К тому же, математическое программирование (линейное, нелинейное, динамическое, целочисленное и т.д.) содержит как средства постановки задачи, так и расширяет возможности доказательства адекватности модели, в отличие от ряда других направлений математики. Идеи оптимального математического программирования для решения экономических (в частности, решения задачи оптимального раскроя листа фанеры) задач были предложены Л.В. Канторовичем.

Поясним особенности метода на примере.

Пример. Предположим, что для производства двух видов продукций А и В нужно использовать сырьё трёх видов. При этом на изготовление единицы продукции вида А расходуется 4 ед. сырья первого вида, 2 ед. 2-го и 3 ед. 3-го вида. На изготовление единицы продукции вида В расходуется 2 ед. сырья 1-го вида, 5 ед. 2-го вида и 4 ед. 3-го вида сырья. На складе фабрики имеется 35 ед. сырья 1-го вида, 43 – 2-го, 40 – 3-го вида. От реализации единицы продукции вида А фабрика имеет прибыль 5 тыс. руб., а от реализации единицы продукции вида В прибыль составляет 9 тыс. руб. Необходимо составить математическую модель задачи, в которой предусматривается получение максимальной прибыли.

Нормы расхода сырья каждого вида на изготовление единицы данного вида продукции приведены в таблице. В ней же указаны прибыль от реализации каждого вида продукции и общее количества сырья данного вида, которое может быть использовано предприятием.

Вид сырья

Запасы сырья

Расход сырья на 1 ед. продукции

А

В

1

2

3

35

43

40

4

2

3

2

5

4

Прибыль от реализации 1 ед. продукции

5

9

Обозначим через х1 и х2 объем выпускаемой продукции видов А и В соответственно. Затраты материала первого сорта на план составят 1 + 2х2, и они не должны превосходить запасов, т.е. 35 кг:

4х1 + 2х2 35.

Аналогичны ограничения по материалу второго сорта:

2х1 + 5х2 43,

и по материалу третьего сорта

3х1 + 4х2 40.

Прибыль от реализации х1 единиц продукции А и х2 единиц продукции В составит z = 5x1 + 9x2 (целевая функция).

Получили модель задачи:

Графическое решение задачи приведено на рисунке 11.

Оптимальное (наилучшее, т.е. максимум функции z) решение задачи – в точке А (решение пояснено в главе 5).

Получили, что х1=4, х2 =7, значение функции z в точке А: .

Таким образом, значение максимальной прибыли равно 83 тыс. руб.

Рис. 11

Кроме графического существует еще ряд специальных методов решения задачи (например, симплекс-метод) или применяются пакеты прикладных программ, их реализующих. В зависимости от вида целевой функции различают линейное и нелинейное программирование, в зависимости от характера переменных выделяют целочисленное программирование.

Можно выделить общие черты математического программирования:

  1. введение понятия целевой функции и ограничений являются средствами постановки задачи;

  2. возможно объединение в одной модели разнородных критериев (разных размерностей, в примере – запасы сырья и прибыль);

  3. модель математического программирования допускает выход на границу области допустимых значений переменных;

  4. возможность реализации пошагового алгоритма получения результатов (пошаговое приближение к оптимальному решению);

  5. наглядность, достигаемая посредством геометрической интерпретацией задачи, помогающая в тех случаях, когда невозможно решить задачу формально.

2) Статистические методы построения математических моделей.

Статистические методы построения математических моделей получили распространение и начали широко применяться с развитием теории вероятностей в 19 веке. В их основе лежат вероятностные закономерности случайных (стохастических) событий, отображающие реальные явления. Термин «стохастические» - уточнение понятия «случайные», указывает на заранее заданные, определенные причины, воздействующие на процесс, а понятие «случайные» характеризуется независимостью от воздействия или отсутствия таких причин.

Статистические закономерности представлены в виде дискретных случайных величин и закономерностей появления их значений или в виде непрерывных зависимостей распределения событий (процессов). Теоретические основы построения стохастических моделей подробно описаны в главе 2.

Контрольные вопросы

1. Сформулируйте основную задачу математического моделирования.

2. Дайте определение математической модели.

3. Перечислите основные недостатки экспериментального подхода в исследовании.

4. Перечислите основные этапы построения модели.

5. Перечислите виды математических моделей.

  1. Дайте краткую характеристику видов моделей.

7. Какой вид принимает математическая модель, представленная геометрически?

8. Как задаются математические модели аналитического типа?

Задания

1. Составить математическую модель решения задачи и провести классификацию модели:

1) Определить наибольшую вместимость цилиндрического ведра, поверхность которого (без крышки) равна S.

2) Предприятие обеспечивает регулярных выпуск продукции при безотказной поставке комплектующих от двух смежников. Вероятность отказа в поставке от первого из смежников – , от второго – . Найти вероятность сбоя в работе предприятия.

2. Модель Мальтуса (1798) описывает размножение популяции со скоростью, пропорциональной ее численности. В дискретном виде этот закон представляет собой геометрическую прогрессию: ;        или        . Закон, записанный в виде дифференциального уравнения, представляет собой модель экспоненциального роста популяции и хорошо описывает рост клеточных популяций в отсутствии какого-либо лимитирования: . Задайте начальные условия и продемонстрируйте работу модели.