
- •Тема 2.1.
- •Класифікація, отримання та очищення
- •Дисперсних систем
- •Основні признаки дисперсних систем
- •Загальні властивості дисперсних систем
- •Класифікація дисперсних систем
- •Класифікація по дисперсності
- •Класифікація за агрегатним станом фаз
- •Класифікація по міжфазній взаємодії
- •Методи одержання колоїдних систем
- •Методи диспергування
- •4 . Ознайомлення з методами очищення колоїдних систем
- •Застосування ультрафільтрації і зворотного осмосу в деяких галузях харчової промисловості
- •Т2.1. «класифікація, отримання та очищення дисперсних систем»
- •Тема 2.2.
- •1.Теорія броунівського руху
- •2. Дифузійно-седиментаційна рівновага
- •3. Oптичні властивості колоїдних систем
- •4.Оптичні методи досліджень колоїдних систем
- •Тема: 2.3. Поверхневі явища і адсорбція план
- •Адсорбція , її види
- •2. Адсорбція на межі розчин – газ
- •3. Адсорбція на межі тверде тіло-газ
- •4. Капілярна конденсація
- •5. Молекулярна адсорбція з розчинів
- •Особливості адсорбції розчинених речовин із розчинів:
- •6. Іонообмінна адсорбція
- •7. Адсорбція з багатокомпонентних розчинів
- •8. Принцип хроматографічного аналізу
- •Значення сорбційних явищ
- •Шкідливість деяких поверхнево-активних речовин (пар)
- •Самостійна робота
- •«Поверхневі явища і адсорбція»
- •Тема 2.4. Електрокінетичні властивості, стабілізація і коагуляція золей план
- •Електрокінетичні явища
- •Будова міцели гідрозоля
- •Агрегативна стійкість золей
- •Коагуляція
- •5. Коагуляційні методи очищення промислових вод на підприємствах харчової промисловості
- •Роль процесів коагуляції при формуванні грунтів
- •Склад шампунів
- •Електричні властивості колоїдних систем
- •1.Запишіть рівняння реакції, що приводить до утворення золю.
- •2. Встановити склад ядра колоїдної частинки.
- •3. Встановити, яка з речовин знаходиться в надлишку.
- •8. Продовжити схему будови міцели, записавши шар противоіонів.
- •9. Зафіксувати знак заряду записаної вами системи - колоїдної частинки:
- •Самостійна робота
- •Т 2.4. «електрокінетичні властивості, стабілізація і коагуляція золів»
- •Тема 2.5. Структуроутворення в дисперсних системах план
- •Вільнодисперсні та зв’язанодисперсні системи
- •2. Гелеутворення. Тиксотропія. Синерезис гелів
- •3. В’язкість дисперсних систем
- •4. Рівняння н’ютона та шведова-бінгама
- •5. Криві течії
- •Тема 2.6 мікрогетерогенні і грубодисперсні системи
- •1. Загальні відомості
- •2. Суспензії, їх стабілізація
- •Характеристика суспензій
- •Одержання суспензій
- •Властивості суспензій
- •Застосування суспензій
- •3. Емульсії та їх одержання
- •Визначення емульсій та поширення в природі
- •4. Піни, їх будова і стійкість
- •Будова пін та їх визначення
- •Одержання пін
- •Характеристика піноутворювачів та їх значення
- •Застосування пін
- •Можливі джерела утворення, тип і форма деяких пін у харчовій промисловості і продуктах харчування
- •Аерозолі та їх властивості
- •Розміри частинок димів і туманів
- •Захист навколишнього середовища від диму, пилу тощо
- •Порошки
- •Визначення порошків та їх розміри
- •Методи одержання порошків
- •Особливості порошків
- •Аерозолі та їх використання
- •Правда і вигадка про аерозолі
- •По темі 2.6. «Мікрогетерогенні та грубодисперсні системи»
- •Тема 2.7. Розчинення високомолекулярних сполук план
- •1. Будова молекул високомолекулярних сполук
- •Конформації макромолекул високомолекулярних сполук
- •Природні і синтетичні високомолекулярні з’єднання
- •3. Набухання полімерів
- •Набухання в технології харчових виробництв
- •Загальна характеристика розчинів полімерів
- •4. Драглі, їх утворення
- •Характеристика нових синтетичних полімерів
- •Функції білків в організмі
- •Характеристика меду
- •Склад губної помади
- •Самостійна робота
- •Термінологічний словник
- •Література
Конформації макромолекул високомолекулярних сполук
Макромолекули природних і деяких синтетичних високомолекулярних з’єднань частіше всього мають форму нерозгалужених ланцюгів або ланцюгів з невеликими розгалуженнями. Така лінійна форма макромолекул обумовлює типові для полімерів властивості - еластичність, здатність утворювати нитки, або плівки високої міцності, додавати при розчиненні в’язкі розчини. Ці властивості визначаються гнучкістю лінійних молекул, здатністю до коливально-обертального руху окремих ланок макромолекул навколо одинарних зв’язків, що їх з’єднують. Завдяки обертанню окремих ланок макромолекула вигинається і може приймати різні конформації.
Конформаціями називаються просторові форми молекул, що переходять одна в одну без розриву хімічного зв’язку за рахунок повороту ланок.
Так, як зв’язків, в молекулі багато і можливих її конформацій. Але внутрішнє обертання в молекулах не може відбуватися вільно. В кожній макромолекулі крім атома вуглецю, що утворюють основний ланцюг, є атоми, водню, розташовані збоку від неї, а також атоми або групи атомів інших елементів, що заміщають водень. Вони можуть взаємодіяти одна з одною, знаходячись або в одній макромолекулі або в різних молекулах.
При повороті одного ланцюга в якій-небудь макромолекулі змінюється відстань між цими боковими атомами або групами атомів, що в свою чергу викличе зміни енергії молекули. Відповідно, для повороту однієї частини молекули відносно іншої необхідно виконати роботу, значення якої залежить від будови молекули. Найбільш гнучкі ланцюги - СН2 – СН2 -, бо взаємодія атомів водню в них невелика. Якщо замість атомів водню в молекулу входять полярні атоми і групи, наприклад, - Cl, –OH, -COOH, то взаємодія між ними буде більш сильною як в межах однієї макромолекули, так і між сусідніми молекулами.
Це приводить до зменшення гнучкості макромолекул і збільшенню жорсткості полімерів.
При низьких температурах для макромолекул характерна витягнута форма. З підвищенням температури збільшується тепловий рух окремих ланок і макромолекули скручуються. Вірогідність існування випрямлених і скручених конформацій неоднакова. Це виходить хоча б з того, що гранично витягнутий стан лінійної макромолекули може бути тільки один, а скрученим макромолекулам може відповідати досить велике число конформації, тобто вони більш вірогідні.
Природні і синтетичні високомолекулярні з’єднання
До найбільш важливих природних високомолекулярних сполук відносяться білки, що є головною складовою частиною всіх речовин тваринного походження. Вони містяться також в рослинах, особливо в зернах пшениці, насінні бобових. Молекули білків побудовані із залишків різних амінокислот, з’єднаних пептидними зв’язками, але в якому порядку ці амінокислоти зв’язані одна з одною, для багатьох білків невідомо. Лінійно побудовані макромолекули білків можуть бути зв’язані одна з одною, наприклад, дисульфідними містками або водневими зв’язками. Молекулярна маса різних білків коливається в широких межах і досягає кількох мільйонів. Білки використовуються головним чином для харчових потреб. Деякі речовини, що містять білки – шкіра, шерсть, натуральний шовк – знаходять і технічне застосування.
Білки – основний матеріал, з якого побудований живий організм. Вони служать матеріалом для побудови кліток, тканин і органів, утворення ферментів і більшості гормонів, гемоглобіну й інших з'єднань, що виконують в організмі особливо важливі й складні функції. Білки формують з'єднання, що забезпечують імунітет до інфекцій, беруть участь у процесі засвоєння (на різних етапах) жирів, вуглеводів, мінеральних речовин і вітамінів. Життя організму пов'язане з безперервною витратою й відновленням білків. Для рівноваги цих процесів (азотистої рівноваги) необхідно щоденне заповнення з їжею білкових втрат. Білки на відміну від жирів і вуглеводів не накопичуються в резерві й не утворяться з інших харчових речовин, тобто є незамінною частиною їжі. Як джерело енергії вони мають другорядне значення, тому що можуть бути замінені жирами й вуглеводами. Окислювання в організмі 1г білка дає 4 ккал.
Запас усіх білків у живих організмах повинен постійно поповнюватися, тому білки – найважливіші поживні речовини. Харчова цінність білків залежить від їхнього складу, тобто від вмісту в них незамінних (не синтезованих самим організмом) амінокислот. Звичайно тваринні білки вважаються для людини важливішими, ніж рослинні.
Колаген - основний білок сполучної тканини, складається з макромолекул, що мають трьохепіральну структуру. Головне джерело одержання колагену - шкіра великої рогатої худоби, у якій його міститься до 95 %. Колаген застосовують як ранове покриття: плівки з фурациліном, кислотою борною, олією обліпиховою, метилурацилом, а також очні плівки з антибіотиками; губки гемостатичні з різними лікарськими речовинами. Він забезпечує оптимальну активність лікарських речовин, що зв'язано з їх глибоким проникненням і тривалим контактом із тканинами організму. Колаген - гарний носій очних лікарських форм (розчинів, плівок).
Білки також відносяться до природних високомолекулярних сполук. В основі цих продуктів лежить поліпептидне угруповання, складні молекули якого побудовані з амінокислот.
У залежності від форми молекул білки розділяють на фібрилярні, що мають лінійну витягнуту форму, і глобулярні, що мають згорнуту кулясту форму молекул - глобуль. Молекулярна маса білків коливається в межах від 27000 до 6800000. При розчиненні у воді молекули білків дисоціюють на іони. Ця дисоціація може відбуватися за кислотним чи основним типом залежно від рН середовища. У дуже кислому середовищі білок поводить себе як основа, його молекула дисоціює за рахунок груп - NH, за основним типом:
HONH3-R-COOH => [NH3-R-COOH]++ ОН-
Кислотна дисоціація при цьому пригнічена. У лужному середовищі, навпаки, пригнічена основна дисоціація, а йде переважно кислотна:
HONH3-R-COOH => [HONH3-R-COO]- + Н+
Однак при певному значенні рН ступінь дисоціації аміно- і карбоксильних груп набуває однакового значення, тоді молекули білків стають електронейтральними. Значення рН, при якому молекула білка знаходиться в електронейтральному стані, називається ізоелектричною точкою (ІЕТ). Для більшості білків ізоелектрична точка лежить в області кислих розчинів. Зокрема, для желатину - 4,7; казеїну молока - 4,6; глобуліну крові - 6,4; пепсину - 2,0; хімотрипсину - 6,0; альбуміну яєчного - 4,7; фармагелю А - 7,0; фармагелю В - 4,7. Необхідно враховувати ІЕТ, тому що встановлено, що від її величини залежить стійкість білків, а отже, і прояв їх властивостей. У деяких випадках можливо навіть випадання білків в осад. Це зв'язано з тим, що в ІЕТ по всій довжині білкової молекули знаходиться рівна кількість позитивно і негативно заряджених іоногенних груп, що приводить до зміни конфігурації молекули. Гнучка молекула звертається в клубок силою притягання різнойменних іонів
Природними високомолекулярними речовинами є целюлоза і крохмаль (вищі полісахариди).
Целюлоза – головна складова частина тканин рослин. Найбільше міститься чистої целюлози (96-98%) у бавовні.
Целюлоза відноситься до полісахаридів. Це клітковина, яка представляє собою головну речовину, з якої складається деревина, рослинні волокна. Молекули целюлози, подібно крохмалю, побудовані з залишків глюкози (α-форми), але відрізняються від крохмалю просторовим розташуванням цих ланок. Макромолекули целюлози лінійні, у них багато полярних гідроксильних груп, які утворюють між собою міцні міжмолекулярні зв'язки, що придають молекулі твердість. Молекулярна маса її коливається в широких межах – від 500тис. до кількох мільйонів.
Окремі макромолекули целюлози пов’язані між собою великою кількістю водневих зв’язків, тому вона не плавиться і не розчиняється. Целюлоза не розчиняється в холодній воді. Наявність у її молекулі вільних гідроксилів дає можливість одержувати прості і складні ефіри, частково або цілком розчинні у воді. Вони являють собою продукти заміщення водневих атомів гідроксильних груп целюлози на спиртові залишки - алкіли (при одержанні простих ефірів) чи кислотні залишки - ацилі (при одержанні складних ефірів). Ефіри целюлози використовують як стабілізатори, пролонгатори, основотворні засоби, а також для підвищення якості багатьох лікарських форм.
Крохмаль є головною складовою частиною всіх злаків та картоплі. Він складається з двох полісахаридів, амілози та амілопектину. Амілоза – лінійний полімер, побудований із залишків глюкози; молекулярна маса амілози вимірюється сотнями тисяч. Амілопектин – розгалужений полімер, також побудований із залишків глюкози; його молекулярна маса може досягати кількох мільйонів.
До найбільш розповсюджених і важливих для харчової промисловості синтетичних полімерів відносяться поліетилен, поліпропілен, полівінілхлорид та політетрафторетилен.
Поліетилен (-СН2–СН2-)n одержують полімеризацією етилена. Молекули цього полімеру лінійні, іноді мають невеликі розгалуження. Молекулярна маса поліетилену знаходиться в межах 25000 до 100000. За способом одержання розрізняють: поліетилен високого, середнього і низького тиску. Поліетилен високого тиску має найбільшу чистоту і використовується у фармацевтичній практиці.
При кімнатній температурі він не розчиняється ні в жодному з відомих розчинників. При 110-120оС становиться пластичним і легко деформується. Завдяки водостійкості, паганій газо- і паро- проникності поліетилен використовують у вигляді плівки для упаковки харчових продуктів. З нього виготовляють труби, пробки і ємкості для зберігання рідин.
СН3
|
Поліпропілен (-СН2-СН-)n має молекулярну масу 60000-200000. Він стійкий до дії кислот. При звичайній температурі поліпропілен ні в чому не розчиняється, плавиться при температурі 164-170оС.
Поліпропілен застосовують для виробництва пакувальної плівки, посуду, труб. Волокна з поліпропілену відрізняються високою міцністю.
Сl
|
Полівінілхлорид (-СН2-СН-)n складається з лімітних або мало розгалужених молекул. Його молекулярна маса 18000-30000. На основі полівінілхлориду промисловість випускає вініпласт – твердий пружний матеріал. Він добре зварюється і склеюється. Його застосовують для виготовлення листів, плівки, труб і деталей апаратури, які можуть експлуатуватися при температурі не вище 50-60оС.
Політетрафторетілен, тефлон ( - СF2 – CF2 - )n плавиться при 320-327оС. Останнім часом поширюється застосування полімеру, що є похідним поліетилену; в його молекулах замість атомів Гідрогену містяться атоми Флуору. Тефлон зовні нагадує поліетилен. Він має високу хімічну і термічну стійкість. Ні в чому він не розчиняється і має надзвичайно високу хімічну стійкість до дії сильних кислот, луг і органічних розчинників навіть при підвищених температурах. Із тефлону виготовляють різне обладнання для хімічної промисловості. Використовується він для виробництва хімічно стійких труб, кранів, вентилів, підшипників. Його використовують у протезуванні; для покриття поверхні посуду, призначеного для нагрівання. Вироби з тефлону можна використовувати в інтервалі температур від -2600С до +2600С.