
- •Основные понятия исследования операций
- •Общая постановка задачи исследования операций
- •3. Экономика – математическое моделирования. Основные понятия и определения.
- •4. Математическое программирование
- •5. Постановка задачи линейного программирования.
- •6. Формы представления злп.
- •7.Двойственная задача линейного программирования
- •8. Первая и вторая теоремы двойственности
- •9. Третья теорема двойственности:
- •10. Решения задачи линейного программирования графический методом. Алгоритм решения
- •11. Симплекс-метода решения задач линейного программирования
- •12.Составление симплекс таблиц. Критерий оптимальности
- •Признак оптимальности опорного плана
- •14. Транспортная задача. Постановка задачи
- •15. Транспортная задача. Математическая модель транспортной задачи.
- •16. Транспортная задача открытого и закрытого типа. Математическая модель двойственной задачи.
- •17. Определения транспортной задачи.
- •18. Алгоритм решения транспортных задач. Метод наименьшего элемента
- •19. Метод потенциалов.
- •20. Целочисленное программирования. Постановка задачи целочисленного программирования.
- •21.Метод ветвей и границ.
- •22. Графический метод решения задачи целочисленного программирования. Алгоритм.
- •23. Задача коммивояжера.
- •24.Динамическое программирование. Постановка задачи.
- •25. Принцип оптимальности Беллмана.
- •26.Формулировка задачи и характеристики смо
- •27.Смо с отказами.
- •28.Смо с неограниченным ожиданием
- •29.Смо с ожиданием и с ограниченной длиной очереди
- •30.Сетевое планирование. Основные понятия метода сетевого планирования
- •31.Расчет сетевых графиков
- •32.Нелинейное программирование.
- •33. Условий и безусловий экстремум
- •34.Теория игр. Основные понятия.
- •35.Антагонистические игры.
- •36. Игры с « природой». Критерий Вальда.
- •37. Игры с природой. Критерий Гурвица. Критерий. Сэвиджа.
- •38. Игры с природой. Критерий Лапласа. Критерий Байеса.
38. Игры с природой. Критерий Лапласа. Критерий Байеса.
Для того чтобы можно сделать вывод о том какую именно стратегию выбирать игроку, необходимо использовать критерии Вальда, Гурвица, Сэвиджа, Лапласа, Байеса.
Критерий Лапласа. Этот критерий основывается на принципе недостаточного обоснования. Поскольку вероятности состояния не известны, необходимая информация для вывода, что эти вероятности различны, отсутствует. Поэтому можно предположить, что они равны. Выбор стратегии осуществляется по формуле
H = Max {1/n·∑ aij}
где 1/n вероятность реализации одного из состояний р = 1/n.
А1 |
(2400+2400+2400+2400+2400)/5=2400 |
А2 |
(1900+3600+3600+3600+3600)/5=3260 |
А3 |
(1400+3100+4800+4800+4800)/5=3780 |
А4 |
(900+2600+4300+6000+6000)/5=3960 |
А5 |
(400+2100+3800+5500+7200)/5=3800 |
Критерий Лапласа рекомендует нам стратегию А4.
Таким образом, рассмотрев одну платежную матрицу, мы получили, что критерии Лапласа и Сэвиджа рекомендует стратегию А4. То есть необходимый заказ булочек составит 250 единиц ежедневно.
Критерий Байеса. Принятие решения в условиях риска.
Если в рассмотренных выше критериях, необходимая информация о вероятностях какого-либо состояния отсутствовала, то критерий Байеса действует в условиях не полной информации, т.е. в условиях риска (имеется информация о вероятностях применения стратегий второй стороной). Эти вероятности называются априорными вероятностями.
Выбор стратегии осуществляется по формуле
H = Max {∑pi aij}
Ежедневный спрос на булочки в продовольственном магазине задается следующим распределением вероятностей
1 |
2 |
3 |
4 |
5 |
100 |
150 |
200 |
250 |
300 |
0,2 |
0,25 |
0,3 |
0,15 |
0,1 |
Поставив значение aij и pi в формулу, получим:
А1 |
2400*0,2+2400*0,25+2400*0,3+2400*0,15+2400*0,1=2400 |
А2 |
1900*0,2+3600*0,25+3600*0,3+3600*0,15+3600*0,1=3260 |
А3 |
1400*0,2+3100*0,25+4800*0,3+4800*0,15+4800*0,1=3695 |
А4 |
900*0,2+2600*0,25+4300*0,3+6000*0,15+6000*0,1=3620 |
А5 |
400*0,2+2100*0,25+3800*0,3+5500*0,15+7200*0,1=3290 |
Критерий Байеса рекомендует стратегию А3
В условиях полной неопределенности теория не дает однозначных принципов выбора того или иного критерия.
Оптимальные стратегии, выбранные по различным критериям, различны.
Таким образом, окончательный вывод зависит от предпочтений человека, который принимает решение.