
- •Основные понятия исследования операций
- •Общая постановка задачи исследования операций
- •3. Экономика – математическое моделирования. Основные понятия и определения.
- •4. Математическое программирование
- •5. Постановка задачи линейного программирования.
- •6. Формы представления злп.
- •7.Двойственная задача линейного программирования
- •8. Первая и вторая теоремы двойственности
- •9. Третья теорема двойственности:
- •10. Решения задачи линейного программирования графический методом. Алгоритм решения
- •11. Симплекс-метода решения задач линейного программирования
- •12.Составление симплекс таблиц. Критерий оптимальности
- •Признак оптимальности опорного плана
- •14. Транспортная задача. Постановка задачи
- •15. Транспортная задача. Математическая модель транспортной задачи.
- •16. Транспортная задача открытого и закрытого типа. Математическая модель двойственной задачи.
- •17. Определения транспортной задачи.
- •18. Алгоритм решения транспортных задач. Метод наименьшего элемента
- •19. Метод потенциалов.
- •20. Целочисленное программирования. Постановка задачи целочисленного программирования.
- •21.Метод ветвей и границ.
- •22. Графический метод решения задачи целочисленного программирования. Алгоритм.
- •23. Задача коммивояжера.
- •24.Динамическое программирование. Постановка задачи.
- •25. Принцип оптимальности Беллмана.
- •26.Формулировка задачи и характеристики смо
- •27.Смо с отказами.
- •28.Смо с неограниченным ожиданием
- •29.Смо с ожиданием и с ограниченной длиной очереди
- •30.Сетевое планирование. Основные понятия метода сетевого планирования
- •31.Расчет сетевых графиков
- •32.Нелинейное программирование.
- •33. Условий и безусловий экстремум
- •34.Теория игр. Основные понятия.
- •35.Антагонистические игры.
- •36. Игры с « природой». Критерий Вальда.
- •37. Игры с природой. Критерий Гурвица. Критерий. Сэвиджа.
- •38. Игры с природой. Критерий Лапласа. Критерий Байеса.
37. Игры с природой. Критерий Гурвица. Критерий. Сэвиджа.
Для того чтобы можно сделать вывод о том какую именно стратегию выбирать игроку, необходимо использовать критерии Вальда, Гурвица, Сэвиджа, Лапласа, Байеса.
Критерий Гурвица (оптимизма - пессимизма). Критерий рекомендует при выборе решения не руководствоваться ни крайним пессимизмом (всегда рассчитывай на худшее), ни крайним легкомысленным оптимизмом (авось кривая выведет). Критерий рекомендует стратегию, определяемую по формуле
H = Max {γmin aij + (1- γ)max aij}
i j j
где γ - степень оптимизма - изменяется в диапазоне [0, 1].
Критерий придерживается некоторой промежуточной позиции, учитывающей возможность как наихудшего, так и наилучшего поведения природы. При γ = 1 критерий превращается в критерий Вальда, при γ = 0 - в критерий максимума. На γ оказывает влияние степень ответственности лица, принимающего решение по выбору стратегии. Чем хуже последствия ошибочных решений, больше желания застраховаться, тем γ ближе к единице.
Рассмотрим платежную матрицу.
Параметр Гурвица возьмем равным 0,6.
|
min |
max |
γmin aij + (1- γ)max aij |
А1 |
2400 |
2400 |
2400*0.6+0.4*2400=2400 |
А2 |
1900 |
3600 |
1900*0.6+3600*0.4=2580 |
А3 |
1400 |
4800 |
1400*0.6+4800*0.4=2760 |
А4 |
900 |
6000 |
900*0.6+6000*0.4=2940 |
А5 |
400 |
7200 |
400*0.6+7200*0.4=3120 |
Критерий Гурвица рекомендует стратегию А5.
Критерий Сэвиджа. Суть критерия состоит в выборе такой стратегии, чтобы не допустить чрезмерно высоких потерь, к которым она может привести. Находится матрица рисков, элементы которой показывают, какой убыток понесет человек (фирма), если для каждого состояния природы он не выберет наилучшей стратегии.
Элементы матрицы рисков находится по формуле (rij):
rij = max aij - aij
где max aij - максимальный элемент в столбце исходной матрицы.
Оптимальная стратегия находится из выражения
H = Min {max(max aij - aij)}
Составим матрицу риска, (max aij - aij).
Выберем максимальный элемент в столбце и вычитаем из него остальные элементы столбца, получим max(max aij - aij).
|
100 |
150 |
200 |
250 |
300 |
Мax |
А1 |
0 |
1200 |
2400 |
3600 |
4800 |
4800 |
А2 |
500 |
0 |
1200 |
2400 |
3600 |
3600 |
А3 |
1000 |
500 |
0 |
1200 |
2400 |
2400 |
А4 |
1500 |
1000 |
500 |
0 |
1200 |
1500 |
А5 |
2000 |
1500 |
1000 |
500 |
0 |
2000 |
Из максимальных значений последнего столбца выбираем минимальную величину, получим Min {max(max aij - aij)}.
Критерий Сэвиджа рекомендует стратегию А4.