
- •Определители второго и третьего порядков. Их свойства.
- •Решение систем линейных уравнений методом Крамера.
- •Декартова система координат на плоскости и в пространстве. Расстояние между двумя точками.
- •Полярная система координат. Связь между полярной и декартовой системами координат.
- •Вектор. Проекции вектора на ось. Линейные операции над векторами.
- •Скалярное произведение двух векторов. Выражение скалярного произведения через координаты перемножаемых векторов.
- •Векторное произведение двух векторов. Выражение векторного произведения через координаты перемножаемых векторов.
- •Смешанное произведение трех векторов. Выражение смешанного произведения через координаты перемножаемых векторов.
- •Условие коллинеарности двух векторов. Условие компланарности трех векторов.
- •Общее уравнение прямой. Неполные уравнения прямой. Уравнение прямой в отрезках.
- •Уравнение прямой с угловым коэффициентом. Каноническое и параметрическое уравнение прямой.
- •Уравнение прямой, проходящей через две заданные точки.
- •Угол между двумя прямыми.
- •Условие параллельности и перпендикулярности прямых. Расстояние от точки до прямой.
- •Общее уравнение плоскости. Неполные уравнения плоскости.
- •Угол между двумя плоскостями.
- •Условие параллельности и перпендикулярности плоскостей.
- •Расстояние от точки до плоскости. Уравнение плоскости, проходящей через три заданные точки.
- •Каноническое уравнение прямой в пространстве. Уравнение прямой, проходящей через две заданные точки.
- •Угол между двумя прямыми в пространстве. Условие параллельности и перпендикулярности прямых. Угол между прямой и плоскостью. Условие параллельности и перпендикулярности прямой и плоскости.
- •Канонические уравнения окружности, эллипса, гиперболы, параболы.
- •Поверхности второго порядка.
- •Множества, операции над множествами.
- •Множество действительных чисел. Абсолютная величина действительного числа и ее свойства.
- •Функция. Способы задания функции. График функции. Четные и нечетные функции, монотонные функции, периодические функции.
- •Числовая последовательность и ее предел. Ограниченность сходящейся последовательности.
- •Теорема о пределе суммы, произведения, частного двух последовательностей.
- •Теорема о пределе промежуточной переменной.
- •Предел функции в точке. Основные теоремы о пределах функции.
- •Односторонние пределы. Непрерывность функции в точке. Классификация точек разрыва. Свойства функций, непрерывных на отрезке.
- •Первый замечательный предел.
- •Второй замечательный предел. Число е.
- •Задачи, приводящие к понятию производной. Геометрический и физический смысл производной. Уравнение касательной к кривой.
- •Дифференциал функции в точке, его геометрический смысл. Правила вычисления дифференциала.
- •Связь между дифференцируемостью и непрерывностью функции в точке.
- •Правила дифференцирования. (Производная суммы, произведения, частного функций. Производная сложной и обратной функций.)
- •Производные основных элементарных функций.
- •Производные высших порядков. Механический смысл второй производной.
- •Логарифмическое дифференцирование.
- •Производная функции, заданной параметрически.
- •Раскрытие неопределенностей. Правило Лопиталя.
- •Экстремумы функции. Необходимое условие экстремума. Достаточное условие экстремума.
- •Возрастание и убывание функции. Теорема о знаке производной в случае возрастания (убывания) функции на интервале.
- •Выпуклость графика функции. Точки перегиба.
- •Вертикальные и наклонные асимптоты.
- •Комплексные числа. Действия над комплексными числами.
Множества, операции над множествами.
Множество - это совокупность, набор элементов, объединенных общими свойствами.
Множества обозначаются заглавными
латинскими буквами
,
а элементы множества строчными латинскими
буквами
.
Запись
означает,
что есть множество
с
элементами
,
которые связаны между собой какой-то
функцией
.
Замечание. Элементы в множество входят по одному разу, т.е. без повторений.
Основные операции:
Принадлежность элемента множеству:
где
--
элемент и
--
множество (элемент
принадлежит
множеству
).
Непринадлежность элемента множеству:
где -- элемент и -- множество (элемент не принадлежит множеству ).
Объединение множеств:
.
Объединением двух множеств
и
называется
множество
,
которое состоит из элементов
множеств
и
,
т.е.
или
Пересечение множеств:
.
Пересечением двух множеств и называется множество , которое состоит из общих элементов множеств и , т.е.
и
Разность множеств:
.
Разностью двух множеств и , например, множество минус множество , называется множество , которое состоит из элементов множества , которых нет в множестве , т.е.
и
Симметрическая разность множеств:
.
Симметрической разностью двух множеств и называется множество , которое состоит из не общих элементов множеств и , т.е.
Дополнение множества:
.
Если предположим, что множество
является
подмножеством некоторого универсального
множества
,
тогда определяется операция дополнения:
и
Вхождение одного множества в другое
множество:
.
Если любой элемент множества является элементом множества , то говорят, что множество есть подмножество множества (множество входит в множество ).
Не вхождение одного множества в другое
множество:
.
Если существует элемент множества , который не является элементом множества , то говорят, что множество не подмножество множества (множество не входит в множество ).
Множество действительных чисел. Абсолютная величина действительного числа и ее свойства.
Объединение множества рациональных чисел и множества иррациональных чисел называется множеством действительных (или вещественных) чисел. Множество действительных чисел обозначается символом R.
бсолютной величиной (или модулем) действительного числа а называется неотрицательное действительное число, удовлетворяющее условиям:
Из определения следует, что а ≤ │а│ для любого а.
Свойства абсолютных величин.
1. Абсолютная величина алгебраической суммы нескольких действительных чисел не больше суммы абсолютных величин слагаемых
.
2. Абсолютная величина разности не меньше абсолютных величин уменьшаемого и вычитаемого
>
.
3. Абсолютная величина произведения равна произведению абсолютных величин
.
4. Абсолютная величина частного равна частному абсолютных величин делимого и делителя
.
Функция. Способы задания функции. График функции. Четные и нечетные функции, монотонные функции, периодические функции.
Опр. 1. Рассмотрим два множества Х и У, элементами которых могут быть любые объекты. Предложим, что каждому элементу х множества Х по некоторому закону f или способу поставлен в соответствие определенный элемент у множества У, тогда говорят что на множестве Х задана функция у = ƒ(х) (или отображение множества Х во множество У). Множество Х называется областью определения функции ƒ, а элементы у=ƒ(х) образуют множество значений функции – У, х – независимая переменная (аргумент), у – зависимая переменная, ƒ – закон соответствия, знак функции.
Способы задания функции. Существует несколько способов задания функции:
а) аналитический способ, если функция задана формулой вида у= f(х);
б) табличный способ состоит в том, что функция задается таблицей, содержащей значения х и соответствующие значения f(х);
в) графический способ, состоит в изображении графика функции – множество точек (х,у) плоскости, абсциссы которых есть значения аргумента х, а ординаты – соответствующие им значения функции у=f(х);
г) описательный способ, если функция записывается правилом ее составления.
Основные элементарные функции:
Степенная функция у=хα;
Показательная функция у=ах, а > 0, а ≠ 1;
Логарифмическая функция у=logах, а>0, а ≠ 1;
Тригонометрические функции: у=sinх, у=cosх , у=tgх, у=ctgх;
Обратные тригонометрические функции у=argsinх, у=arccosх, у=arctgх, у=arcctgх.
Под основными свойствами функции у=f(x) будем понимать следующие шесть:
1) область определения D(f);
2) область значений E(f);
3) четность, нечетность;
4) монотонность;
5) ограниченность;
6) периодичность.
Четность и нечетность.
Орп. 1. Функция у=f(x) называется четной, если для любых значений х из области определения f(-x)=f(x) и нечетной, если f(-x)=-f(x). В противном случае функция у=f(x) называется функцией общего вида.
График четной функции симметричен относительно оси ординат, а график нечетной функции симметричен относительно начала координат. Поэтому для четной функции достаточно строить лишь правую половину графика (х≥0); левая половина его (х≤0) является зеркальным отражением правой относительно оси Оу.
Чтобы построить график нечетной функции, достаточно изобразить правую половину его (х≥0); левая половина графика (х≤0) получается в результате поворота правой на 180°.
Монотонность.
Опр. 2. Функция у=f(x) называется строго возрастающей (строго убывающей) на промежутке X, если большему значению аргумента соответствует большее (меньшее) значение функции. Более точно, функция у=f(x) называется строго возрастающей (строго убывающей) на промежутке X, если для любых двух значений х1 и х2, принадлежащих этому промежутку из неравенства х2>х1 следует неравенство f(х2)>f(х1) (f(х2)<f(х1)).
Строго возрастающие и строго убывающие функции называются строго монотонными функциями.
Если последнее неравенство является нестрогим, то говорят о нестрогом возрастании (нестрогом убывании) функции или просто о возрастании (убывании) функции.
Опр. 3. Функция у=f (х) называется возрастающей (убывающей) на промежутке X, если для любых двух значений х1 и х2, принадлежащих этому промежутку из неравенства х2>х1 следует нестрогое неравенство f(х2)≥f(х1) (f(х2)≤f(х1))
Возрастающие и убывающие функции называются монотонными функциями.
Ограниченность.
Опр. 4. Функция называется ограниченной
на промежутке X, если существует такое
положительное число М>0, что |f(x)|<М
для любого х
X.
Периодичность.
Опр. 5. Функция у=f(x) называется периодической, если существует положительное число Т такое, что f(х+Т)=f(x). Наименьшее число с таким свойством называется периодом функции.
Для построения графика периодической функции достаточно изобразить его на отрезке, длина которого равна периоду (основная область), а затем построить периодическое продолжение графика, повторяя график, нарисованный в основной области.