Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Matematika_otvety.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
701.76 Кб
Скачать
  1. Правила дифференцирования. (Производная суммы, произведения, частного функций. Производная сложной и обратной функций.)

Пусть U(х) и V(х) дифференцируемы в точке х.

(U(x) + V(x))` = U`(x) + V`(x)

(U(x) · V(x))` = U`(x) · V(x) + V`(x) · U(x)

(C·U(x))` = CU`(x), C - const

(U(x) / V(x))` = [U`(x) · V(x) - V`(x) · U(x)]/ V2(x).

Формула для нахождения производной от сложной функции такова:

[f (φ(х))]` = fφ`(φ(x)) ·φ`(x)

Дифференцирование обратной функции. Если у=f(x) и х=g(y) – взаимно-обратные дифференцируемые функции и у'х≠0, то т. е. производная обратной функции равна обратной величине производной данной функции.

  1. Производные основных элементарных функций.

    

  1. Производные высших порядков. Механический смысл второй производной.

Пусть функция y=f(x) дифференцируема на некотором отрезке [a; b]. Значение производной f'(x), вообще говоря, зависит от x, т.е. производная f'(x) представляет собой тоже функцию переменной x. Пусть эта функция также имеет производную. Дифференцируя ее, получим так называемую вторую производную от функции f(x).

Производная от первой производной называется производной второго порядка или второй производной от данной функции y=f(x) и обозначается y''или f''(x). Итак, y'' = (y')'.

Например, если у = х5, то y'= 5x4, а y''= 20x4.

Аналогично, в свою очередь, производную второго порядка тоже можно дифференцировать. Производная от второй производной называется производной третьего порядка илитретьей производной и обозначается y'''или f'''(x).

Вообще, производной n-го порядка от функции f(x) называется производная (первая) от производной (n – 1)-го порядка и обозначается символом y(n) или f(n)(x): y(n) = (y(n-1))'.

Таким образом, для нахождения производной высшего порядка от данной функции последовательно находят все ее производные низших порядков.

Выясним механический смысл второй производной. (Механический смысл первой производной – скорость).

Пусть материальная точка движется прямолинейно по закону s=s(t), где s – путь, проходимый точкой за время t. Тогда скорость vэтого движения есть v= s'(t) = v(t), т.е. тоже некоторая функция времени.

В момент времени t скорость имеет значение v=v(t). Рассмотрим другой момент времени t+Δt. Ему соответствует значение скорости v1 = v(t+Δt). Следовательно, приращению времени Δt соответствует приращение скорости Δv= v1 – v = v(t + Δt) – v(t). Отношение   называется средним ускорением за промежуток времени Δt.

Ускорением в данный момент времени t называется предел среднего ускорения при Δt→0:

.

Таким образом, ускорение прямолинейного движения точки есть производная скорости по времени. Но как мы уже видели, скорость есть производная пути s по времениt: v = s'. Учитывая это, имеем:

a = v'(t) = (s')' = s''(t),

т.е. ускорение прямолинейного движения точки равно 2-й производной пути по времени

a = S''(t).

  1. Логарифмическое дифференцирование.

Логарифмическим дифференцированием называется метод дифференцирования функций, при котором сначала находится логарифм функции, а затем вычисляется производная от него. Такой прием позволяет эффективно вычислять производные степенных и рациональных функций.  Рассмотрим этот подход более детально. Пусть дана функция y = f(x). Возьмем натуральные логарифмы от обеих частей:

Теперь продифференцируем это выражение как сложную функцию, имея ввиду, что y - это функция от x.

Отсюда видно, что искомая производная равна

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]