
- •3. Поверка, градуировка. Эталонные приборы (первичные, вторичные, третичные ).
- •4)Вариация технических измерительных приборов.
- •5 Динамическая характеристика измерительного прибора.
- •Измерительные преобразователи
- •Параметрические преобразователи
- •Уравновешенный мост
- •Неуравновешенный мост
- •Цель сравнительных испытаний
Измерительные преобразователи
Измери́тельный преобразова́тель — техническое средство с нормируемыми метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации и передачи, но непосредственно не воспринимаемый оператором. ИП или входит в состав какого-либо измерительного прибора (измерительной установки, измерительной системы и др.) или применяется вместе с каким-либо средством измерений.
По характеру преобразования:
-Аналоговый измерительный преобразователь — измерительный преобразователь, преобразующий одну аналоговую величину (аналоговый измерительный сигнал) в другую аналоговую величину (измерительный сигнал);
-Аналого-цифровой измерительный преобразователь — измерительный преобразователь, предназначенный для преобразования аналогового измерительного сигнала в цифровой код;
-Цифро-аналоговый измерительный преобразователь — измерительный преобразователь, предназначенный для преобразования числового кода в аналоговую величину.
По месту в измерительной цепи:
-Первичный измерительный преобразователь — измерительный преобразователь, на который непосредственно воздействует измеряемая физическая величина. Первичный измерительный преобразователь является первым преобразователем в измерительной цепи измерительного прибора;
-Датчик — конструктивно обособленный первичный измерительный преобразователь;
-Детектор — датчик в области измерений ионизирующих излучений;
-Промежуточный измерительный преобразователь — измерительный преобразователь, занимающий место в измерительной цепи после первичного преобразователя.
По другим признакам:
-Передающий измерительный преобразователь — измерительный преобразователь, предназначенный для дистанционной передачи сигнала измерительной информации;
-Масштабный измерительный преобразователь — измерительный преобразователь, предназначенный для изменения размера величины или измерительного сигнала в заданное число раз.
По принципу действия ИП делятся на генераторные и параметрические.
Параметрические преобразователи
Устройства, содержащие не менее двух поверхностей, между которыми действует электрическое поле, называются электростатическими преобразователями (ЭС). Электрическое поле создается извне приложенным напряжением или возникает при действии на вход преобразователя измерительного сигнала.
1. Преобразователи, в которых электрическое поле создается приложенным напряжением, составляют группу емкостных преобразователей. Основным элементом в этих преобразователях является конденсатор переменной емкости, изменяемой входным измерительным сигналом.
Электростатический преобразователь
Основной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до сотен микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.
Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью S каждая, расположенных на расстоянии d друг от друга, в системе СИ выражается формулой:
,
где
—
относительная диэлектрическая
проницаемость среды, заполняющей
пространство между пластинами (в вакууме
равна единице),
—
электрическая постоянная, численно
равная
Ф/м
(эта формула справедлива, лишь когда d много
меньше линейных размеров пластин).
Изменение любого из этих параметров изменяет емкость конденсатора.
Номинальная емкость емкостных преобразователей обычно лежит в пределах от единиц до сотен пикофарад. На частоте 50 Гц внутреннее сопротивление преобразователя достигает значений более 10 Ом. При столь высоком сопротивлении возможны погрешности, обусловленные паразитными токами утечки, причем на результат измерения влияет непостоянство сопротивления изоляции. Для уменьшения сопротивления преобразователя частота напряжения питания увеличивается до нескольких килогерц и вьше, вплоть до нескольких мегагерц.
Конструкция емкостного датчика проста, он имеет малые массу и размеры. Его подвижные электроды могут быть достаточно жесткими, с высокой собственной частотой, что дает возможность измерять быстропеременные величины. Емкостные преобразователи можно выполнять с заданной (линейной или нелинейной) функцией преобразования. Для получения требуемой функции преобразования часто достаточно изменить форму электродов. Отличительной особенностью является малая сила притяжения электродов.
Основным недостатком емкостных преобразователей является малая их емкость и высокое сопротивление. Для уменьшения последнего преобразователи питаются напряжением высокой частоты. Однако это обусловливает другой недостаток - сложность вторичных преобразователей. Недостатком является и то, что результат измерения зависит от изменения параметров кабеля. Для уменьшения погрешности измерительную цепь и вторичный прибор располагают вблизи датчика.
Пример применения: Ёмкостный сенсорный экран в общем случае представляет собой стеклянную панель, на которую нанесён слой прозрачного резистивного материала. По углам панели установлены электроды, подающие на проводящий слой низковольтное переменное напряжение. Поскольку тело человека способно проводить электрический ток и обладает некоторой ёмкостью, при касании экрана в системе появляется утечка. Место этой утечки, то есть точку касания, определяет простейший контроллер на основе данных с электродов по углам панели.
2. Резистивными называют преобразователи, в которых переносчиком измерительной информации является электрическое сопротивление. Резистивные преобразователи составляют две большие группы: электрические и механоэлектрические. В основу принципа преобразования электрических резистивных преобразователей (шунтов, добавочных резисторов, резистивных делителей и т. п.) положена зависимость между напряжением, током и электрическим сопротивлением, определяемая законом Ома, и зависимость электрического сопротивления проводника от его длины, удельного сопротивления.
Принцип работы механоэлектрических резистивных преобразователей (например, реостатных) основан на изменении электрического сопротивления под действием входной преобразуемой механической величины. К резистивным преобразователям часто относят и тензорезисторы, принцип действия которых основан на изменении электрического сопротивления различных материалов под действием механической деформации. Тензорезисторы могут измерять и преобразовать разнообразные физические величины в электрические сигналы и широко применяются в датчиках силы, давления, перемещения, ускорения или вращающего момента. В качестве материалов таких преобразователей используются проводники с проволочными и фольговыми чувствительными элементами или полупроводники. В последнее время для построения тензопреобразователей стали применять эффекты изменения характеристик р-п переходов под давлением механического воздействия (тензодиоды и тензотранзисторы).
3. Электромагнитные преобразователи составляют очень большую и разнообразную по принципу действия и по назначению группу преобразователей, объединенных общностью теории, принципа преобразования, основанного на использовании электромагнитных явлений.
Это масштабные электромагнитные преобразователи (измерительные трансформаторы, индуктивные делители напряжения и тока), индуктивные трансформаторные и автотрансформаторные преобразователи неэлектрических величин, а также индуктивные и индукционные преобразователи.
4. Генераторные преобразователи (датчики) выдают на выход измеритель-ный сигнал за счет собственной внутренней энергии и не нужда-ются в каких-либо внешних источниках. Характерным примером такого рода датчика может служить датчик скорости вращения типа тахогенератора. Развиваемая тахогенератором ЭДС может быть пропорциональной скорости вращения его ротора.
К генераторным датчикам относятся:
- термоэлектрические;
- индукционные;
- пьезоэлектрические;
- фотоэлектрические.
Измерительные схемы
Измерительные цепи Измерительная цепь представляет собой функционально-структурную схему, отображающую методы и технические средства реализации требуемой функции преобразования прибора. Измерительная цепь включает все элементы прибора от входа до устройства воспроизведения (указатель, регистратор и др.). Измерительная схема прибора – понятие более узкое, она не включает первичного преобразователя, устройства воспроизведения и др. Измерительные цепи можно разделить на цепи прямого преобразования, когда преобразователи соединяются последовательно или параллельно согласно, и цепи уравновешивающего преобразования, когда все или основные преобразователи соединены параллельно встречно (цепи с обратной связью). Основные разновидности применяемых измерительных схем ???????
26. Измерение параметров элементов электрических цепей. Мостовые измерительные схемы. Уравновешенный мост. Неуравновешенный мост
Измерение параметров элементов электрических цепей ?????
Мостовые измерительные схемы
1. Существующие методы электрических измерений можно в основном разделить на два класса: непосредственной оценки и сравнения.
При непосредственной оценке измерительная схема выполняет лишь функции преобразования выходного сигнала датчика, например, усиливает его или согласует выходное сопротивление датчика с входным сопротивлением прибора. Этот метод прост, но применяется редко, так как ему свойственны значительные погрешности (особенно при изменении напряжения питания датчика).
Метод сравнения обеспечивает более высокие точность и чувствительность. При этом используются мостовые, дифференциальные и компенсационные схемы измерения.
Мостовые измерительные схемы применяют постоянного и переменного тока. Существуют мостовые схемы уравновешенные и неуравновешенные схемы. Уравновешенные мосты требуют ручной или автоматической балансировки, в то время как неуравновешенные мосты не требуют
Уравновешенный мост представляет собой схему (Рисунок 34, а), состоящую из ромба, образуемого четырьмя сопротивлениями R1 R2, R3, Rt. Резисторы в схеме называют ветвями или плечами моста. Помимо этого в мостовую схему включены источник тока со своим сопротивлением RE и измерительный прибор с сопротивлением Rnp. В четырехугольнике также есть две диагонали, в одну из которых включен миллиамперметр, а в другую - источник тока. Для подстройки моста одно плечо (R3) является переменным сопротивлением.
Закон уравновешенного моста: произведение сопротивлений противолежащих плеч должны быть равны.
R1/R2=R3/Rt.или R1·Rt=R2·R3
Если необходимо вычислить неизвестное сопротивление датчика, то можно включить его в одно из плеч моста, вместо резистора R4· и воспользоваться формулой:
Rt=R2·R3/R1 [2.4]
Ток в диагонали моста, содержащей измерительный прибор, через напряжение питания:
Inp=U(R1Rt-R2R3)/M [2.5]
Основной характеристикой любой схемы является ее чувствительность. Она определяется как отношение приращения тока в измерительной диагонали ∆Inp к вызвавшему его изменению сопротивления одного из плеч моста:
Sсх =∆Inp /∆R [2.6]
∆Inp=U∆RRt/M [2.7]
где ∆Inp - результирующий ток в диагонали моста, содержащей измерительный прибор, A; U - напряжение питания, В; М - входное напряжение, В.
Неуравновешенный мост представляет собой схему (Рисунок 34, б), состоящую из ромба, образуемого четырьмя сопротивлениями R1 R2, R3, R5, Rt. Помимо этого в мостовую схему включены источник тока со своим сопротивлением RE и измерительный прибор с сопротивлением Rnp. Для подстройки моста одно плечо (R5) является переменным сопротивлением.
|
|
а) |
В качестве измерительного прибора в неуравновешенных мостах используются амперметры (так как токи невелики, то обычно мили- и микроамперметры). Неуравновешенный мост подчиняется тем же законам, что и уравновешенный.
Уравновешенный мост