Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Statistika_1.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
631.13 Кб
Скачать

38. У чому особливість середньої гармонічної? За яких умов вона використовується?

Середня гармонічна – це обернена до середньої арифметичної із обернених значень ознак. ЇЇ обчислюють, коли необхідно осереднення обернених індивідуальних значень ознак шляхом їх підсумування. У випадку розрахунку середньої гармонічної зваженої її обчислюють тоді, коли відомі дані про загальний обсяг ознаки (z=xf), а також індивідуальні значення ознаки (х), невідома є частота (f). (коли відсутня інформація про значення знаменника логічної формули, тобто відсутні ваги)

Проста :

Зважена :

де z – обсяг значень ознаки.

Середню гармонійну використовують, наприклад, для визначення середніх затрат праці, часу, матеріалів на одиницю продукції, на одну деталь за двома (трьома тощо) підприємствами, робітниками, які зайняти виготовленням одного й того ж виду продукції, однієї й тієї ж деталі.

Приклад. Маємо дані про витрати часу в годинах на виготовлення однієї деталі кожним з трьох робітників: ½, 1/3, 1/7. Треба обчислити середні витрати часу на виготовлення однієї деталі.

Приклад. Три промислових підприємства виробляють міксери. Собівартість виробництва міксера на 1-му підприємстві – 50 грн., на 2-му – 30 грн., на 3-му – 60 грн. визначити середню собівартість виробництва міксера за умови, що витрати на виробництво на 1-му підприємстві складають 600 грн., на 2-му – 660 грн., на 3-му – 900 грн.

Якби кожне з підприємств випускало б по одному міксеру, то можна було б застосувати формулу середньої арифметичної грн..

Використовуючи формулу середньої гармонійної зваженої, розрахуємо середню собівартість 1-го міксера:

грн.

39. Як визначається, коли використовується середня геометрична?

Середню геометричну застосовують у тих випадках, коли обсяг сукупності формується не сумою, а добутком індивідуальних значень ознак. Цей вид середньої використовується здебільшого для обчислення середніх коефіцієнтів (темпів) зростання в рядах динаміки. Так, у випадку однакових часових інтервалів між рівнями динамічного ряду середня геометрична проста має такий вигляд :

n – кількість інтервалів.

Приклад. Кількість зареєстрованих злочинів за чотири роки зросла у 1,57 рази, у тому числі за перший рік – у 1,08; за другий – у 1,1; за третій – у 1,18; за четвертий – у 1,12 рази. Середньорічний темп зростання кількості зареєстрованих злочинів становить:

рази, тобто число зареєстрованих злочинів зростало щорічно у середньому на 12 %.

40. Середня хронологічна. Техніка обчислення та випадки застосування.

Середня хронологічна розраховується при аналізі показників, які задані дискретно, тобто у формі величин, що характеризують явище на пені моменти часу, певні дати.

Якщо показники характеризують аналізоване явище за період, розбитий на рівні проміжки часу, то середня величина у таких випадках визначається як середня хронологічна за формулою:

,

де п – число моментів.

Приклад. У комерційному банку сума кредиторської заборгованості на початок кожного кварталу становила, млн. гр. од.: 1.01. – 20; 1.04. – 26; 1.07. – 32; 1.10. – 29; 31.12. – 22. Середньоквартальна сума кредиторської заборгованості складає:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]