
- •Введение
- •Введение в компьютерные и операционные системы
- •Структура компьютерной системы
- •Программное обеспечение компьютерной системы
- •1.2.1 Операционная система
- •1.2.1.1 Управляющая программа
- •1.2.1.2 Системные обрабатывающие программы
- •1.2.2 Пакеты прикладных программ
- •1.2.3 Программы технического обслуживания
- •Аппаратное обеспечение компьютерной системы
- •1.3.1 Процессор
- •1.3.2 Внутренняя память
- •1.3.3 Устройства ввода и вывода, внешняя память
- •Основные функции и архитектурные особенности ос
- •1.4.1 Основные функции ос:
- •3) Управление памятью.
- •1.4.2 Монолитное ядро
- •1.4.3 Слоеные системы (Layered systems)
- •1.4.4 Виртуальные машины
- •1.4.5 Микроядерная архитектура
- •1.4.6 Смешанные системы
- •Классификация ос
- •Контрольные вопросы
- •Архитектура компьютерных систем
- •Классификация архитектур по параллельной обработке данных
- •Гибридная архитектура numa
- •Кластерная архитектура
- •Проблемы выполнения сети связи процессоров в кластерной системе
- •Контрольные вопросы
- •Способы организации высокопроизводительных процессоров. Ассоциативные конвейерные и матричные процессоры
- •1) Ассоциативные процессоры
- •2) Конвейерные процессоры
- •3) Матричные процессоры
- •Ассоциативные процессоры
- •Конвейерные процессоры
- •Матричные процессоры
- •Контрольные вопросы
- •Способы организации высокопроизводительных процессоров. Новые архитектуры процессоров
- •Клеточные и днк-процессоры.
- •Коммуникационные процессоры
- •Процессоры баз данных
- •Потоковые процессоры
- •Нейронные процессоры
- •Процессоры с многозначной (нечеткой) логикой
- •Контрольные вопросы
- •Управление процессами. Состояние процессов и операции над процессами
- •Введение в процессы
- •Состояния процесса
- •Операции над процессами и связанные с ними понятия
- •5.3.1 Набор операций
- •5.3.2 Pcb и контекст процесса
- •5.3.3 Одноразовые операции
- •5.3.4 Многоразовые операции
- •5.3.5 Прерывание и типы прерываний
- •5.3.6 Переключение контекста
- •5.3.7 Ядро операционной системы
- •Контрольные вопросы
- •Управление процессами. Кооперация процессов и основные аспекты ее логической организации
- •Введение в кооперацию процессов
- •Взаимодействующие процессы
- •Категории средств обмена информацией
- •Логическая организация механизма передачи информации
- •6.4.1 Установление связи между процессами
- •6.4.2 Однонаправленные и двунаправленные связи между процессами
- •6.4.3 Особенности передачи информации с помощью линий связи
- •1) Буферизация
- •2) Поток ввода/вывода и сообщения
- •6.4.4. Надежность средств связи
- •6.4.5 Завершение связи
- •Потоки исполнения
- •Контрольные вопросы
- •Управление процессами. Алгоритмы синхронизации
- •Чередования, условия состязания и взаимоисключения
- •Критическая секция
- •Алгоритмы взаимоисключений
- •7.3.1 Требования, предъявляемые к алгоритмам
- •7.3.2 Запрет прерываний
- •7.3.3 Переменная-замок
- •7.3.4 Строгое чередование
- •7.3.5 Флаги готовности
- •7.3.6 Алгоритм Петерсона
- •7.3.7 Алгоритм булочной (Bakery algorithm)
- •Аппаратная поддержка взаимоисключений
- •7.4.1 Команда Test-and-Set (Проверить и присвоить 1)
- •7.4.2 Команда Swap (Обменять значения)
- •Недостатки алгоритмов взаимоисключений
- •Семафоры
- •7.6.1 Концепция семафоров
- •7.6.2 Решение проблемы производитель-потребитель с помощью семафоров
- •Мониторы
- •Сообщения
- •Эквивалентность семафоров, мониторов и сообщений
- •Контрольные вопросы
- •Управление процессами. Тупики
- •Введение в тупики
- •Концепция ресурса
- •Условия возникновения тупиков
- •Основные направления борьбы с тупиками
- •2) Обнаружение тупиков
- •3) Восстановление после тупиков
- •Алгоритм страуса
- •Обнаружение тупиков
- •Восстановление после тупиков
- •8.7.1 Восстановление при помощи перераспределения ресурсов
- •8.7.2 Восстановление через откат назад
- •8.7.3 Восстановление через ликвидацию одного из процессов
- •Способы предотвращения тупиков путем тщательного распределения ресурсов
- •8.8.1 Предотвращение тупиков и алгоритм банкира
- •8.8.2 Недостатки алгоритма банкира
- •Предотвращение тупиков за счет нарушения условий возникновения тупиков
- •8.9.1 Нарушение условия взаимоисключения
- •8.9.2 Нарушение условия ожидания дополнительных ресурсов
- •8.9.3 Нарушение принципа неперераспределяемости
- •8.9.4 Нарушение условия кругового ожидания
- •Проблемы аналогичные тупикам
- •8.10.1 Двухфазная локализация
- •8.10.2 Тупики не ресурсного типа
- •8.10.3 Голод
- •Контрольные вопросы
- •Управление памятью. Простейшие схемы управления памятью
- •1) Введение в управление памятью
- •2) Связывание адресов
- •Введение в управление памятью
- •Связывание адресов
- •Простейшие схемы управления памятью
- •9.3.1 Схема с фиксированными разделами
- •1) Один процесс в памяти
- •2) Оверлейная структура
- •9.3.2 Схема со свопингом
- •9.3.3 Схема с переменными разделами
- •Контрольные вопросы
- •Управление памятью. Архитектурные средства поддержки виртуальной памяти
- •1) Проблема размещения больших программ. Понятие виртуальной памяти
- •Проблема размещения больших программ. Понятие виртуальной памяти
- •Архитектурные средства поддержки виртуальной памяти
- •Способы организации виртуальной памяти
- •1) Страничная память
- •2) Сегментная организация памяти
- •3) Сегментно-страничная организации памяти
- •Ассоциативная память
- •Иерархия памяти
- •Размер страницы
- •Контрольные вопросы
- •Управление памятью. Аппаратно-независимый уровень управления виртуальной памятью
- •Введение в аппаратно-независимый уровень управления виртуальной памятью
- •Исключительные ситуации при работе с памятью
- •Стратегии управления страничной памятью
- •Алгоритмы замещения страниц
- •11.4.1 Алгоритм fifo (выталкивание первой пришедшей страницы)
- •11.4.2 Оптимальный алгоритм
- •11.4.3 Алгоритм lru (выталкивание дольше всего не использовавшейся страницы)
- •11.4.4 Алгоритм nfu (выталкивание редко используемой страницы)
- •11.4.5 Другие алгоритмы
- •Thrashing. Свойство локальности. Модель рабочего множества
- •Демоны пейджинга
- •Аппаратно-независимая модель памяти процесса
- •Отдельные аспекты функционирования менеджера памяти
- •Контрольные вопросы
- •Система управления вводом-выводом. Физические принципы организации ввода-вывода
- •Введение в систему управления вводом-выводом
- •Введение в физические принципы организации ввода-вывода
- •Общие сведения об архитектуре компьютера
- •Структура контроллера устройства
- •Опрос устройств
- •Прерывания
- •Прямой доступ к памяти
- •Контрольные вопросы
- •Система управления вводом-выводом. Логические принципы организации ввода-вывода
- •1) Введение в логические принципы организации ввода-вывода
- •2) Структура системы ввода-вывода
- •3) Систематизация внешних устройств и интерфейс между базовой подсистемой ввода-вывода и драйверами
- •Введение в логические принципы организации ввода-вывода
- •Структура системы ввода-вывода
- •Систематизация внешних устройств и интерфейс между базовой подсистемой ввода-вывода и драйверами
- •Функции базовой подсистемы ввода-вывода
- •Блокирующиеся, не блокирующиеся и асинхронные системные вызовы
- •Буферизация и кэширование
- •Spooling и захват устройств
- •Обработка прерываний и ошибок
- •Планирование запросов
- •Алгоритмы планирования запросов к жесткому диску
- •13.10.1 Строение жесткого диска и параметры планирования
- •Алгоритм fcfs
- •Алгоритм sstf
- •Алгоритмы сканирования (scan, c-scan, look, c-look)
- •Контрольные вопросы
- •Интерфейсы компьютерных систем
- •Классификация интерфейсов
- •Интерфейс rs-232 для порта сом
- •Интерфейс ieee 1284 для порта lpt
- •Интерфейс ps/2
- •Интерфейс usb
- •Интерфейс Firewire
- •Контрольные вопросы
- •Многопроцессорные компьютерные системы
- •1) Достоинства многопроцессорных систем
- •Достоинства многопроцессорных систем
- •Организация многопроцессорной аппаратуры
- •15.2.1 Общая шина
- •15.2.2 Матрица координатной коммутации
- •15.2.3 Организация с многопортовой памятью
- •Организация многопроцессорных операционных систем
- •15.3.1 Организация «главный-подчиненный»
- •15.3.2 Организация с раздельными мониторами
- •15.3.3 Симметричная организация
- •Контрольные вопросы
- •Требования к компьютерным системам
- •Основные требования к компьютерным системам
- •Отношение "стоимость/производительность"
- •Надежность и отказоустойчивость компьютерных систем
- •Показатели надежности компьютерных систем
- •Масштабируемость
- •Совместимость и мобильность программного обеспечения
- •Контрольные вопросы
- •Программы диагностики компьютерных систем
- •1) Программа диагностики post
- •2) Программа диагностики WatchDog
- •Программа диагностики post
- •Программа диагностики WatchDog
- •Контрольные вопросы
- •Список использованных источников
Показатели надежности компьютерных систем
Средняя наработка
на отказ
определяется в
виде
,
где
- число устройств (элементов) в составе
КС,
- интенсивность
отказов
-го
устройства (элемента) КС.
Вероятность
безотказной работы
– это вероятность того, что время работы
до отказа
будет не меньше заданного времени
Вероятность
безотказной работы
определяется в виде
,
где
- количество работоспособных элементов
КС к моменту времени
,
- общее количество
элементов КС.
Вероятность безотказной работы определяется в виде
Вероятность
отказа
определяется в виде
Вероятность
появления
отказов за время
определяется в виде
Вероятность
работы без сбоев
определяется в виде
,
где
- интенсивность отказов
-го
устройства (элемента) КС.
Вероятность
появления
сбоев за время
определяется в виде
Вероятность
работы без отказов и сбоев
определяется в виде
Среднее время
восстановления
определяется в виде
где - число устройств (элементов) в составе КС,
- интенсивность
восстановления
-го
устройства (элемента) КС.
Вероятность
восстановления
– это вероятность того, что время
восстановления работоспособности
не превысит заданного времени
,
т.е.
Вероятность
восстановления
определяется в виде
В качестве комплексного показателя надежности можно использовать:
- коэффициент
готовности
,
который определяется в виде
;
- коэффициент
простоя
,
который определяется в виде
;
- коэффициент
оперативной готовности
,
который определяется в виде
;
- коэффициент
технического использования
,
который определяется в виде
где
- интервал времени безотказной работы
(за календарное время эксплуатации)
между
-м
и
-м
нарушениями функционирования машины
из-за отказов,
- время восстановления
после
-го
отказа,
- время восстановления
достоверности информации после
-го
сбоя (например, время, потраченное на
повторное выполнение программы или ее
части),
- машинное время,
затраченное в рассматриваемый период
эксплуатации на контроль достоверности
информации (например, из-за процедур
автоматического контроля правильности
работы КС),
- время, затраченное
на
-е
профилактическое обслуживание.
Масштабируемость
Масштабируемость представляет собой возможность наращивания числа и мощности процессоров, объемов оперативной и внешней памяти и других ресурсов КС. Масштабируемость должна обеспечиваться архитектурой и конструкцией компьютера, а также соответствующими средствами программного обеспечения.
Так, например, возможность масштабирования кластера ограничена значением отношения скорости процессора к скорости связи, которое не должно быть слишком большим (реально это отношение для больших систем не может быть более 3-4, в противном случае не удается даже реализовать режим единого образа операционной системы). С другой стороны, последние 10 лет истории развития процессоров и коммуникаторов показывают, что разрыв в скорости между ними все увеличивается. Добавление каждого нового процессора в действительно масштабируемой системе должно давать прогнозируемое увеличение производительности и пропускной способности при приемлемых затратах. Одной из основных задач при построении масштабируемых систем является минимизация стоимости расширения компьютера и упрощение планирования. В идеале добавление процессоров к системе должно приводить к линейному росту ее производительности. Однако это не всегда так. Потери производительности могут возникать, например, при недостаточной пропускной способности шин из-за возрастания трафика между процессорами и основной памятью, а также между памятью и устройствами ввода/вывода. В действительности реальное увеличение производительности трудно оценить заранее, поскольку оно в значительной степени зависит от динамики поведения прикладных задач.
Возможность масштабирования системы определяется не только архитектурой аппаратных средств, но зависит от свойств программного обеспечения. Масштабируемость программного обеспечения затрагивает все его уровни, от простых механизмов передачи сообщений до работы с такими сложными объектами как мониторы транзакций и вся среда прикладной системы. В частности, программное обеспечение должно минимизировать трафик межпроцессорного обмена, который может препятствовать линейному росту производительности системы. Аппаратные средства (процессоры, шины и устройства ввода/вывода) являются только частью масштабируемой архитектуры, на которой программное обеспечение может обеспечить предсказуемый рост производительности. Важно понимать, что, например, простой переход на более мощный процессор может привести к перегрузке других компонентов системы. Это означает, что действительно масштабируемая система должна быть сбалансирована по всем параметрам.