
- •Введение
- •Введение в компьютерные и операционные системы
- •Структура компьютерной системы
- •Программное обеспечение компьютерной системы
- •1.2.1 Операционная система
- •1.2.1.1 Управляющая программа
- •1.2.1.2 Системные обрабатывающие программы
- •1.2.2 Пакеты прикладных программ
- •1.2.3 Программы технического обслуживания
- •Аппаратное обеспечение компьютерной системы
- •1.3.1 Процессор
- •1.3.2 Внутренняя память
- •1.3.3 Устройства ввода и вывода, внешняя память
- •Основные функции и архитектурные особенности ос
- •1.4.1 Основные функции ос:
- •3) Управление памятью.
- •1.4.2 Монолитное ядро
- •1.4.3 Слоеные системы (Layered systems)
- •1.4.4 Виртуальные машины
- •1.4.5 Микроядерная архитектура
- •1.4.6 Смешанные системы
- •Классификация ос
- •Контрольные вопросы
- •Архитектура компьютерных систем
- •Классификация архитектур по параллельной обработке данных
- •Гибридная архитектура numa
- •Кластерная архитектура
- •Проблемы выполнения сети связи процессоров в кластерной системе
- •Контрольные вопросы
- •Способы организации высокопроизводительных процессоров. Ассоциативные конвейерные и матричные процессоры
- •1) Ассоциативные процессоры
- •2) Конвейерные процессоры
- •3) Матричные процессоры
- •Ассоциативные процессоры
- •Конвейерные процессоры
- •Матричные процессоры
- •Контрольные вопросы
- •Способы организации высокопроизводительных процессоров. Новые архитектуры процессоров
- •Клеточные и днк-процессоры.
- •Коммуникационные процессоры
- •Процессоры баз данных
- •Потоковые процессоры
- •Нейронные процессоры
- •Процессоры с многозначной (нечеткой) логикой
- •Контрольные вопросы
- •Управление процессами. Состояние процессов и операции над процессами
- •Введение в процессы
- •Состояния процесса
- •Операции над процессами и связанные с ними понятия
- •5.3.1 Набор операций
- •5.3.2 Pcb и контекст процесса
- •5.3.3 Одноразовые операции
- •5.3.4 Многоразовые операции
- •5.3.5 Прерывание и типы прерываний
- •5.3.6 Переключение контекста
- •5.3.7 Ядро операционной системы
- •Контрольные вопросы
- •Управление процессами. Кооперация процессов и основные аспекты ее логической организации
- •Введение в кооперацию процессов
- •Взаимодействующие процессы
- •Категории средств обмена информацией
- •Логическая организация механизма передачи информации
- •6.4.1 Установление связи между процессами
- •6.4.2 Однонаправленные и двунаправленные связи между процессами
- •6.4.3 Особенности передачи информации с помощью линий связи
- •1) Буферизация
- •2) Поток ввода/вывода и сообщения
- •6.4.4. Надежность средств связи
- •6.4.5 Завершение связи
- •Потоки исполнения
- •Контрольные вопросы
- •Управление процессами. Алгоритмы синхронизации
- •Чередования, условия состязания и взаимоисключения
- •Критическая секция
- •Алгоритмы взаимоисключений
- •7.3.1 Требования, предъявляемые к алгоритмам
- •7.3.2 Запрет прерываний
- •7.3.3 Переменная-замок
- •7.3.4 Строгое чередование
- •7.3.5 Флаги готовности
- •7.3.6 Алгоритм Петерсона
- •7.3.7 Алгоритм булочной (Bakery algorithm)
- •Аппаратная поддержка взаимоисключений
- •7.4.1 Команда Test-and-Set (Проверить и присвоить 1)
- •7.4.2 Команда Swap (Обменять значения)
- •Недостатки алгоритмов взаимоисключений
- •Семафоры
- •7.6.1 Концепция семафоров
- •7.6.2 Решение проблемы производитель-потребитель с помощью семафоров
- •Мониторы
- •Сообщения
- •Эквивалентность семафоров, мониторов и сообщений
- •Контрольные вопросы
- •Управление процессами. Тупики
- •Введение в тупики
- •Концепция ресурса
- •Условия возникновения тупиков
- •Основные направления борьбы с тупиками
- •2) Обнаружение тупиков
- •3) Восстановление после тупиков
- •Алгоритм страуса
- •Обнаружение тупиков
- •Восстановление после тупиков
- •8.7.1 Восстановление при помощи перераспределения ресурсов
- •8.7.2 Восстановление через откат назад
- •8.7.3 Восстановление через ликвидацию одного из процессов
- •Способы предотвращения тупиков путем тщательного распределения ресурсов
- •8.8.1 Предотвращение тупиков и алгоритм банкира
- •8.8.2 Недостатки алгоритма банкира
- •Предотвращение тупиков за счет нарушения условий возникновения тупиков
- •8.9.1 Нарушение условия взаимоисключения
- •8.9.2 Нарушение условия ожидания дополнительных ресурсов
- •8.9.3 Нарушение принципа неперераспределяемости
- •8.9.4 Нарушение условия кругового ожидания
- •Проблемы аналогичные тупикам
- •8.10.1 Двухфазная локализация
- •8.10.2 Тупики не ресурсного типа
- •8.10.3 Голод
- •Контрольные вопросы
- •Управление памятью. Простейшие схемы управления памятью
- •1) Введение в управление памятью
- •2) Связывание адресов
- •Введение в управление памятью
- •Связывание адресов
- •Простейшие схемы управления памятью
- •9.3.1 Схема с фиксированными разделами
- •1) Один процесс в памяти
- •2) Оверлейная структура
- •9.3.2 Схема со свопингом
- •9.3.3 Схема с переменными разделами
- •Контрольные вопросы
- •Управление памятью. Архитектурные средства поддержки виртуальной памяти
- •1) Проблема размещения больших программ. Понятие виртуальной памяти
- •Проблема размещения больших программ. Понятие виртуальной памяти
- •Архитектурные средства поддержки виртуальной памяти
- •Способы организации виртуальной памяти
- •1) Страничная память
- •2) Сегментная организация памяти
- •3) Сегментно-страничная организации памяти
- •Ассоциативная память
- •Иерархия памяти
- •Размер страницы
- •Контрольные вопросы
- •Управление памятью. Аппаратно-независимый уровень управления виртуальной памятью
- •Введение в аппаратно-независимый уровень управления виртуальной памятью
- •Исключительные ситуации при работе с памятью
- •Стратегии управления страничной памятью
- •Алгоритмы замещения страниц
- •11.4.1 Алгоритм fifo (выталкивание первой пришедшей страницы)
- •11.4.2 Оптимальный алгоритм
- •11.4.3 Алгоритм lru (выталкивание дольше всего не использовавшейся страницы)
- •11.4.4 Алгоритм nfu (выталкивание редко используемой страницы)
- •11.4.5 Другие алгоритмы
- •Thrashing. Свойство локальности. Модель рабочего множества
- •Демоны пейджинга
- •Аппаратно-независимая модель памяти процесса
- •Отдельные аспекты функционирования менеджера памяти
- •Контрольные вопросы
- •Система управления вводом-выводом. Физические принципы организации ввода-вывода
- •Введение в систему управления вводом-выводом
- •Введение в физические принципы организации ввода-вывода
- •Общие сведения об архитектуре компьютера
- •Структура контроллера устройства
- •Опрос устройств
- •Прерывания
- •Прямой доступ к памяти
- •Контрольные вопросы
- •Система управления вводом-выводом. Логические принципы организации ввода-вывода
- •1) Введение в логические принципы организации ввода-вывода
- •2) Структура системы ввода-вывода
- •3) Систематизация внешних устройств и интерфейс между базовой подсистемой ввода-вывода и драйверами
- •Введение в логические принципы организации ввода-вывода
- •Структура системы ввода-вывода
- •Систематизация внешних устройств и интерфейс между базовой подсистемой ввода-вывода и драйверами
- •Функции базовой подсистемы ввода-вывода
- •Блокирующиеся, не блокирующиеся и асинхронные системные вызовы
- •Буферизация и кэширование
- •Spooling и захват устройств
- •Обработка прерываний и ошибок
- •Планирование запросов
- •Алгоритмы планирования запросов к жесткому диску
- •13.10.1 Строение жесткого диска и параметры планирования
- •Алгоритм fcfs
- •Алгоритм sstf
- •Алгоритмы сканирования (scan, c-scan, look, c-look)
- •Контрольные вопросы
- •Интерфейсы компьютерных систем
- •Классификация интерфейсов
- •Интерфейс rs-232 для порта сом
- •Интерфейс ieee 1284 для порта lpt
- •Интерфейс ps/2
- •Интерфейс usb
- •Интерфейс Firewire
- •Контрольные вопросы
- •Многопроцессорные компьютерные системы
- •1) Достоинства многопроцессорных систем
- •Достоинства многопроцессорных систем
- •Организация многопроцессорной аппаратуры
- •15.2.1 Общая шина
- •15.2.2 Матрица координатной коммутации
- •15.2.3 Организация с многопортовой памятью
- •Организация многопроцессорных операционных систем
- •15.3.1 Организация «главный-подчиненный»
- •15.3.2 Организация с раздельными мониторами
- •15.3.3 Симметричная организация
- •Контрольные вопросы
- •Требования к компьютерным системам
- •Основные требования к компьютерным системам
- •Отношение "стоимость/производительность"
- •Надежность и отказоустойчивость компьютерных систем
- •Показатели надежности компьютерных систем
- •Масштабируемость
- •Совместимость и мобильность программного обеспечения
- •Контрольные вопросы
- •Программы диагностики компьютерных систем
- •1) Программа диагностики post
- •2) Программа диагностики WatchDog
- •Программа диагностики post
- •Программа диагностики WatchDog
- •Контрольные вопросы
- •Список использованных источников
Интерфейс ps/2
Последовательный интерфейс PS/2 предназначен специально для клавиатуры и мыши. Характеризуется большей частотой опроса, чем COM, что позволяет получить более "гладкое" движение мыши. Как правило, на современных платах их два (не больше, не меньше). Для порта PS/2 не рекомендуется «горячее отключение».
Интерфейс usb
Последовательный интерфейс USB разработана лидерами компьютерной и телекоммуникационной промышленности – Compaq, DEC, IBM, Intel, Microsoft, NEC и Northern Telecom – для подключения компьютерной периферии вне корпуса машины по стандарту plug'n'play, в результате отпадает необходимость в установке дополнительных плат в слоты расширения и переконфигурировании системы. Персональные компьютеры, имеющие последовательную шину USB, позволяют подключать периферийные устройства и осуществляют их автоматическое конфигурирование, как только устройство физически будет присоединено к машине, и при этом нет необходимости перезагружать или выключать компьютер, а так же запускать программы установки и конфигурирования. Шина USB позволяет одновременно подключать последовательно до 127 устройств.
Устройства, подключаемые к USB, можно подразделить на:
а) функциональные - выполняют какую-то конкретную функцию и не берут на себя никаких дополнительных задач (например, клавиатура, мышь и др.);
б) концентраторы (хабы) - выполняют только функцию разветвления;
в) совмещенные (комбинированные) устройства, имеющие дополнительные порты для подключения других устройств.
USB предоставляет для взаимодействия программный интерфейс, позволяя клиентскому ПО существовать в отрыве от конкретного подключенного к шине устройства и его конфигурации. Интерфейс USB имеет самоидентифицирующуюся периферию, автоматическую связь с драйверами и конфигурирование, обеспечивает «горячее» (без перезагрузки) подключение и отключение устройств. Интерфейс реализуется встроенным в плату контроллером USB. Шина автоматически определяет, какой системный ресурс, включая программный драйвер и пропускную способность, нужен каждому периферийному устройству и делает этот ресурс доступным без вмешательства пользователя.
Виды периферийного оборудования, которые поддерживает USB: телефоны, модемы, клавиатуры, мыши, устройства чтения CD ROM, джойстики, ленточные и дисковые накопители, сканеры и принтеры, MP3-плееры и флаш-драйвы. Скорость прокачки в 480 мегабит/секунду (для USB 2.0) позволяет подключать через USB все современное поколение периферийных устройств, включая аппаратуру для обработки видео данных формата MPEG-2, перчатки для управления виртуальными объектами и дигитайзеры. Также, с ожиданием большого роста в области интеграции компьютеров и телефонии, шина USB может выступать в качестве интерфейса для подключения устройств цифровой сети с интегрированными услугами (ISDN) и цифровых устройств Private Branch eXchange (PBX), позволяющих подключать большое количество телефонов к небольшому количеству линий связи.
Работу интерфейса USB обеспечивают:
а) USB Host Controller – аппаратные и программные средства, обеспечивающие подключение устройств USB к компьютеру;
б) USB System SW – системная поддержка USB операционной системой, независимая от конкретных устройств;
в) USB Client SW – программное обеспечение, соответствующее конкретному устройству, исполняемое на хост-компьютере и физическое ПУ USB.
Физическое соединение устройств осуществляется по топологии многоярусной звезды. Центром каждой звезды является хаб (концентратор), или устройство, обеспечивающее дополнительные точки подключения других устройств к шине USB. На вершине пирамиды находится 1 хост-контроллер, реализуемый чипсетом на системной плате, и имеющий обычно 2 порта для подключения кабеля USB. У каждого хаба имеется один восходящий порт для подключения к контроллеру или хост-хабу верхнего уровня, и нисходящие порты для подключения устройств нижнего уровня. Допускается организация до пяти уровней.
Хост-контроллер - посредник между хостом и устройствами на шине. В его обязанности входит:
1) Слежение за подключением и отключением устройств
2) Организация управляющих потоков между USB-устройством и хостом.
3) Организация потоков данных между USB-устройством и хостом
4) Контроль состояния устройств и ведение статистики активности
5) Снабжение подключенных устройств электропитанием
Концентратор (хаб) позволяет множественные подключения к одному порту, создавая дополнительные порты. Каждый хаб имеет один восходящий порт, предназначенный для подключения к имеющемуся в наличии свободному порту, и несколько нисходящих, к которым могут быть подключены или снова концентраторы, или конечные устройства, либо совмещенные устройства. Хаб должен следить за подключением и отключением устройств, уведомляя хост об изменениях, управлять питанием портов. Помимо разветвления и трансляции транзакций хаб должен осуществлять конфигурирование портов и слежение за корректным функционированием подключенных к ним устройств. Рекомендуется подключать низкоскоростные устройства к низкоскоростным хабам, которые в свою очередь делают последними уровнями ветвления.
В концентраторе стандарта USB 2.0 имеется 3 функциональных блока:
1) Контроллер - отвечает за соединения с хостом.
2) Повторитель соединять входной и нужный из выходных портов.
3) Транслятор транзакций - обеспечивает максимальную скорость соединения с хостом. Транслятор транзакций буферизирует поступающий с медленного порта кадр, а затем на максимальной скорости передает его хосту, или же буферизирует получаемый на максимальной скорости кадр от хоста, передавая его затем устройству на меньшей, приемлемой для него скорости.
Обмен данными между хост-контроллером и устройством на шине может происходить по нескольким каналам, так называемый многоканальный режим. Полоса пропускания шины делиться между всеми установленными каналами.
Шина USB предоставляет каналы следующих типов:
1) Каналы сообщений. Являются двунаправленными каналами и служат для передачи сообщений, имеющих строго определенный в спецификации формат, необходимый для обеспечения надежной идентификации и передачи команд. Возникает канал при отсылке хостом запроса в устройства, и управляет передачей только хост. Каналы сообщений используется для передач только управляющего типа.
2) Потоковые каналы. Являются однонаправленными. В отличие от четко определенных сообщений не имеют определенного закрепленного в стандарте формата, что означает возможность передачи данных любого вида. Эти передачи могут контролироваться не только хостом, но и устройством. Используется для передач данных типа прерывание, групповая пересылка, изохронная (смотрим ниже). В спецификации в зависимости от типа передаваемых данных, предъявляемых требований к скорости обработки, задержки доставки и т.п. определены следующие типы передач.
3) Управляющие передачи. Используются для конфигурирования устройств во время подключения и выполнения других специфических функций над устройством, включая организацию новых каналов.
4) Прерывания. Используются для спонтанных, но гарантированных передач с гарантированными скоростями и задержками. Используются обычно для передачи введенных данных от клавиатуры или сведений об изменении положения указателя мыши, в устройствах обратной связи, и т.д
5) Групповая пересылка. Используется для гарантированной передачи данных больших объемов без предьявленных требований к скоростям и задержкам. Занимает под себя всю свободную пропускную способность шины. В любой момент доступная полоса может быть урезана при необходимости осуществления передач других видов с более высоким приоритетом, или добавлена, при освобождении другими устройствами. Обычно такие передачи используется между принтерами, сканерами, накопителями и др.
6) Изохронная передача. Используются для потоковых передач данных в реальном времени. Резервируют определенную полосу пропускания шины, гарантируют определенные величины задержек доставки, но не гарантируют доставку (в случае обнаружения ошибки повторной передачи не происходит. Передачи этого вида используются для передачи аудио и видео трафика.
Устройства на шине USB делятся на:
а) ведущие (только одно – хост);
б) ведомые (все остальные).
Все передачи данных инициируются хостом в соответствии определенной временной программой. Функциональные устройства сами не могут инициировать передачу, а лишь отвечают на запросы хоста. Обмен данными возможен только между хостом и устройством, и не возможен на прямую между устройствами подключенными к шине. Транзакции на USB шине состоят из двух-трех актов: посылки пакета маркера, определяющего, что будет следовать дальше (тип транзакции, адрес устройства и его конечную точку), пакета данных (опционально), и пакета статуса транзакции (для подтверждения нормального выполнения операции или сообщения об ошибке). Физические каналы связи организуются концентраторами и соединительными проводами. Провод использующийся для подключения USB устройств представляет собой экранированную витую пару. Всего в USB кабеле используется 4 проводов.