Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
АК_лекции.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.74 Mб
Скачать

11.4.1 Алгоритм fifo (выталкивание первой пришедшей страницы)

Простейший алгоритм. Каждой странице присваивается временная метка. Реализуется это просто созданием очереди страниц, в конец которой страницы попадают, когда загружаются в физическую память, а из начала берутся, когда требуется освободить память. Для замещения выбирается старейшая страница. К сожалению, эта стратегия с достаточной вероятностью будет приводить к замещению активно используемых страниц, например, страниц текстового процессора. При замещении активных страниц все работает корректно, но fault происходит немедленно.

Аномалия Belady

Не всегда чем больше страничных кадров имеет память, тем реже будут иметь место page fault'ы. Как установил Белейди (рис.11.1), определенные последовательности обращений к страницам приводят в действительности к увеличению числа страничных нарушений при увеличении кадров, выделенных процессу. Это явление носит название аномалии FIFO.

Три кадра (9 faults) оказываются лучше, чем 4 кадра (10 faults) для 012301401234 цепочки чередования страниц при выборе стратегии FIFO.

Рисунок 11.1 - Аномалия Belady. (a) FIFO с тремя страничными кадрами. (b) FIFO с четырьмя страничными кадрами.

11.4.2 Оптимальный алгоритм

Одно из последствий открытия аномалии Belady - поиск оптимального алгоритма. Этот алгоритм имеет минимальную частоту fault'ов среди всех алгоритмов. Он прост: замещай страницу, которая не будет использоваться в течение длительного периода времени.

Каждая страница помечается числом инструкций, которые будут выполнены, прежде чем на эту страницу будет сделана первая ссылка.

Этот алгоритм нереализуем. ОС не знает, к какой странице будет следующее обращение. (Ранее такие проблемы были с планированием процессов - алгоритм SJF). Для второго обращения уже можно делать прогноз на основе информации собранной после первого обращения.

Зато из этого можно сделать вывод, что для того, чтобы алгоритм замещения был максимально близок к идеальному алгоритму, система должна как можно точнее предсказывать будущие обращения процессов к памяти. Данный алгоритм применяется для оценки качества реализуемых алгоритмов.

11.4.3 Алгоритм lru (выталкивание дольше всего не использовавшейся страницы)

Ключевое отличие между FIFO и оптимальным алгоритмом в том, что один смотрит назад, а другой вперед. Если использовать прошлое, для аппроксимации будущего, имеет смысл замещать страницу, которая не использовалась в течение долгого времени. Такой подход называется алгоритм LRU (least recently used).

LRU часто используется и считается хорошим. Основная проблема - реализация. Необходимо иметь связанный список всех страниц в памяти, в начале которого будут часто используемые страницы. Причем он должен обновляться при каждой ссылке. Много времени нужно на поиск страниц в списке. Есть вариант реализации со специальным устройством. Например, - иметь 64-битный указатель, который автоматически увеличивается на 1 после каждой инструкции и в таблице страниц иметь соответствующее поле, в которое заносится значение указателя при каждой ссылке на страницу. При возникновении page fault'а выгружается страница с наименьшим указателем.

Как оптимальный алгоритм, так и LRU не страдают от аномалии Белейди. Существует класс алгоритмов, называемых стековыми (stack) алгоритмами, которые не проявляют аномалии Белейди. Это алгоритмы, для которых множество страниц в памяти для n кадров всегда подмножество страниц для n+1 кадра. LRU таковым является.

Заметим, что никакая реализация LRU неприемлема без специального оборудования помимо стандартных регистров. Если, например, задействовать прерывание для модификации полей, то это будет замедлять ссылку к памяти в 10 раз.